Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • METADATOS
  • CONDICIONES DE USO
  • ARCHIVOS
  • ITEMS RELACIONADOS
  • ESTADISTICAS
 
 
Datos de investigación

Deciphering Aquaporin-1 Permeability Modulation by Membrane Lipid Composition and Bilayer Mechanical Stress via Atomistic Simulations

Autores: Gioia, Daiana SolangeIcon ; Casal, Juan JoséIcon ; Toriano, Roxana MabelIcon
Publicador: Consejo Nacional de Investigaciones Científicas y Técnicas
Fecha de depósito: 18/12/2025
Fecha de recolección: 01/03/2024-05/06/2025
Clasificación temática:
Ciencias de la Información y Bioinformática; Biofísica; Ciencias de la Computación

Resumen

Aquaporin-1 (AQP1) is a critical water channel whose functionality is inherently tied to its surrounding lipid environment. Using atomistic molecular dynamics (MD) simulations totaling several microseconds, we investigated the coupled influence of membrane composition and bilayer mechanical tension on AQP1 water permeability. Specifically, systems featuring varying concentrations of anionic lipids (e.g., POPG, Cardiolipin) and differential lateral pressures were analyzed. Our results reveal a non-linear modulation of water flux, quantified via single-channel permeability coefficients and potential of mean force (PMF) profiles, across the channel's selectivity filter. High mechanical tension, regardless of the lipid type, consistently induced a statistically significant decrease in water conductance, attributed to a subtle yet critical tilting of the pore-lining helices and a local increase in the energy barrier within the NPS region. Conversely, specific anionic lipid compositions attenuated this effect, suggesting a compensatory, charge-mediated stabilization of the channel structure under stress. These findings underscore the necessity of considering the membrane's chemomechanical state when modeling AQP1 function and provide essential insights for rational drug design targeting the ADMET properties of water-soluble compounds.

Métodos

The molecular dynamics simulations were performed using the GROMACS (Version ) software package.Force Field: The Charmm36m force field was employed for the protein (Aquaporin-1) and the lipid bilayer components.Water Model: The TIP3P water model was used to solvate the systems.Ions: Counterions Na+ y Cl- were added to neutralize the system and achieve a physiological concentration (e.g., 0.15 M).System Size: The total system size typically ranged from 120,000 to 150,000 atoms, depending on the specific lipid composition and box dimensions. Simulation Protocol: The protocol followed standard equilibration and production steps: Minimization: Energy minimization was performed using the steepest descent algorithm. Equilibration: Systems were equilibrated in the NVT (Isothermal-Isochoric) and NPT (Isothermal-Isobaric) ensembles for a total of 50-100 ns to relax the lipid bilayer around the protein. Production Runs: Final production runs were executed in the NPT ensemble, ensuring anisotropic pressure coupling for accurate membrane tension control (often set at 1 bar pressure and 310 K temperature). Integration Time Step: A 2 fs time step was used, coupled with the LINCS algorithm to constrain bond lengths involving hydrogen atoms.AnalysisTrajectory analysis utilized standard GROMACS tools and custom Python scripts leveraging MDAnalysis for detailed quantification of:Water Permeability: Calculated via water crossing events or potential of mean force (PMF) profiles. Membrane Properties: Bilayer thickness, area per lipid (APL), and mechanical tension profiles.Protein Dynamics: Conformational changes and helix tilting related to the applied mechanical stress.
Palabras clave: AQUAPORIN-1, LIPIDIC MEMBRANE, MOLECULAR DYNAMICS
Previsualización destacada
Identificador del recurso
URI: http://hdl.handle.net/11336/278076
Colecciones
Datos de Investigación(IFIBIO HOUSSAY)
Datos de Investigación de INSTITUTO DE FISIOLOGIA Y BIOFISICA BERNARDO HOUSSAY
Citación
Gioia, Daiana Solange; Casal, Juan José; Toriano, Roxana Mabel; (2025): Deciphering Aquaporin-1 Permeability Modulation by Membrane Lipid Composition and Bilayer Mechanical Stress via Atomistic Simulations. Consejo Nacional de Investigaciones Científicas y Técnicas. (dataset). http://hdl.handle.net/11336/278076
Condiciones de uso
Las buenas prácticas científicas esperan que se otorgue el crédito adecuado mediante una citación. Utilice un formato de citación y aplique estas normas de reutilización.
info:eu-repo/semantics/openAccess
Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Compartir
Archivos del conjunto de datos
Archivo
Notas de uso
Tamaño
 
AQP1.zip
  Más
869.0Mb
  Descarga
 
 
Descargar todo
  Descargar solo metadatos (JSON)   Descargar solo metadatos (XML)
 
Preparando la descarga
 

Ver el registro completo

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES