Mostrar el registro sencillo del ítem

dc.contributor.author
Lederman, Claudia Beatriz  
dc.contributor.author
Wolanski, Noemi Irene  
dc.date.available
2025-12-02T12:16:01Z  
dc.date.issued
2006-12  
dc.identifier.citation
Lederman, Claudia Beatriz; Wolanski, Noemi Irene; A two phase elliptic singular perturbation problem with a forcing term; Gauthier-Villars/Editions Elsevier; Journal de Mathematiques Pures Et Appliquees; 86; 6; 12-2006; 552-589  
dc.identifier.issn
0021-7824  
dc.identifier.uri
http://hdl.handle.net/11336/276544  
dc.description.abstract
We study the following two phase elliptic singular perturbation problem: Due=be(ue)+fe in WÌRN, where e>0, be(s)=(1/e)b(s/e), with b a Lipschitz function satisfying b>0 in (0,1), bº0 outside (0,1) and òb(s)ds = M . The functions ue and fe are uniformly bounded. One of the motivations for the study of this problem is that it appears in the analysis of the propagation of flames in the high activation energy limit, when sources are present. We obtain uniform estimates, we pass to the limit (e®0) and we show that limit functions are solutions to the two phase free boundary problem Du = f x{mº0}      in    W ¶{u>0},                                                                               |Ñu+|2 - |Ñu-|2 = 2M       on    WǶ{u>0}, where f = limfe , in a viscosity sense and in a pointwise sense at regular free boundary points. In addition, we show that the free boundary is smooth and thus limit functions are classical solutions to the free boundary problem, under suitable assumptions. Some of the results obtained are new even in the case feº0. The results in this paper also apply to other combustion models. For instance, models with nonlocal diffusion and/or transport. Several of these applications are discussed here and we get, in some cases, the full regularity of the free boundary.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Gauthier-Villars/Editions Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
FREE BOUNDARY PROBLEM  
dc.subject
TWO PHASE  
dc.subject
VISCOSITY SOLUTIONS  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A two phase elliptic singular perturbation problem with a forcing term  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-10-07T09:23:13Z  
dc.journal.volume
86  
dc.journal.number
6  
dc.journal.pagination
552-589  
dc.journal.pais
Francia  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Lederman, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.description.fil
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.journal.title
Journal de Mathematiques Pures Et Appliquees  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021782406001280  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.matpur.2006.10.008