Mostrar el registro sencillo del ítem
dc.contributor.author
Lederman, Claudia Beatriz
dc.contributor.author
Wolanski, Noemi Irene
dc.date.available
2025-12-02T12:16:01Z
dc.date.issued
2006-12
dc.identifier.citation
Lederman, Claudia Beatriz; Wolanski, Noemi Irene; A two phase elliptic singular perturbation problem with a forcing term; Gauthier-Villars/Editions Elsevier; Journal de Mathematiques Pures Et Appliquees; 86; 6; 12-2006; 552-589
dc.identifier.issn
0021-7824
dc.identifier.uri
http://hdl.handle.net/11336/276544
dc.description.abstract
We study the following two phase elliptic singular perturbation problem: Due=be(ue)+fe in WÌRN, where e>0, be(s)=(1/e)b(s/e), with b a Lipschitz function satisfying b>0 in (0,1), bº0 outside (0,1) and òb(s)ds = M . The functions ue and fe are uniformly bounded. One of the motivations for the study of this problem is that it appears in the analysis of the propagation of flames in the high activation energy limit, when sources are present. We obtain uniform estimates, we pass to the limit (e®0) and we show that limit functions are solutions to the two phase free boundary problem Du = f x{mº0} in W ¶{u>0}, |Ñu+|2 - |Ñu-|2 = 2M on WǶ{u>0}, where f = limfe , in a viscosity sense and in a pointwise sense at regular free boundary points. In addition, we show that the free boundary is smooth and thus limit functions are classical solutions to the free boundary problem, under suitable assumptions. Some of the results obtained are new even in the case feº0. The results in this paper also apply to other combustion models. For instance, models with nonlocal diffusion and/or transport. Several of these applications are discussed here and we get, in some cases, the full regularity of the free boundary.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Gauthier-Villars/Editions Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
FREE BOUNDARY PROBLEM
dc.subject
TWO PHASE
dc.subject
VISCOSITY SOLUTIONS
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A two phase elliptic singular perturbation problem with a forcing term
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-10-07T09:23:13Z
dc.journal.volume
86
dc.journal.number
6
dc.journal.pagination
552-589
dc.journal.pais
Francia
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Lederman, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
dc.description.fil
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
dc.journal.title
Journal de Mathematiques Pures Et Appliquees
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021782406001280
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.matpur.2006.10.008
Archivos asociados