Artículo
A two phase elliptic singular perturbation problem with a forcing term
Fecha de publicación:
12/2006
Editorial:
Gauthier-Villars/Editions Elsevier
Revista:
Journal de Mathematiques Pures Et Appliquees
ISSN:
0021-7824
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the following two phase elliptic singular perturbation problem: Due=be(ue)+fe in WÌRN, where e>0, be(s)=(1/e)b(s/e), with b a Lipschitz function satisfying b>0 in (0,1), bº0 outside (0,1) and òb(s)ds = M . The functions ue and fe are uniformly bounded. One of the motivations for the study of this problem is that it appears in the analysis of the propagation of flames in the high activation energy limit, when sources are present. We obtain uniform estimates, we pass to the limit (e®0) and we show that limit functions are solutions to the two phase free boundary problem Du = f x{mº0} in W ¶{u>0}, |Ñu+|2 - |Ñu-|2 = 2M on WǶ{u>0}, where f = limfe , in a viscosity sense and in a pointwise sense at regular free boundary points. In addition, we show that the free boundary is smooth and thus limit functions are classical solutions to the free boundary problem, under suitable assumptions. Some of the results obtained are new even in the case feº0. The results in this paper also apply to other combustion models. For instance, models with nonlocal diffusion and/or transport. Several of these applications are discussed here and we get, in some cases, the full regularity of the free boundary.
Palabras clave:
FREE BOUNDARY PROBLEM
,
TWO PHASE
,
VISCOSITY SOLUTIONS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Lederman, Claudia Beatriz; Wolanski, Noemi Irene; A two phase elliptic singular perturbation problem with a forcing term; Gauthier-Villars/Editions Elsevier; Journal de Mathematiques Pures Et Appliquees; 86; 6; 12-2006; 552-589
Compartir
Altmétricas