Mostrar el registro sencillo del ítem

dc.contributor.author
Saavedra, Marcos David  
dc.contributor.author
Faedo, Nicolás Ezequiel  
dc.contributor.author
Inthamoussou, Fernando Ariel  
dc.contributor.author
Mosquera, Facundo  
dc.contributor.author
Garelli, Fabricio  
dc.date.available
2025-11-14T15:02:09Z  
dc.date.issued
2025-09  
dc.identifier.citation
Saavedra, Marcos David; Faedo, Nicolás Ezequiel; Inthamoussou, Fernando Ariel; Mosquera, Facundo; Garelli, Fabricio; Comparative evaluation of data-based estimators for wave-induced force in wave energy converters; Springer; Journal of Ocean Engineering and Marine Energy; 9-2025; 1-14  
dc.identifier.issn
2198-6452  
dc.identifier.uri
http://hdl.handle.net/11336/275675  
dc.description.abstract
Wave energy conversion technology emerges as a promising approach to renewable energy generation, offering a consistent and predictable power source that complements intermittent renewable energy sources such as solar and wind power. Achieving optimal ocean wave energy absorption requires precise knowledge of the so-called wave excitation force, which is typically estimated through model-based techniques reliant on accurate system descriptions. However, uncertainties inherent to hydrodynamic modelling often limit the reliability of these approaches. To address this challenge, this paper presents a comprehensive evaluation of model-free data-based estimators, for wave excitation torque estimation in Wavestar like wave energy converters (WECs). The study examines various neural network architectures, including static models (feedforward networks) and those incorporating temporal dynamics (recurrent neural networks and long short-term memory networks). The analysis examines the impact of utilising multiple input combinations, ranging from motion variables to configurations enhanced with surrounding wave height measurements from the device’s vicinity. Input selection is guided by correlation analysis and spectral coherence evaluation to ensure physical relevance and practical feasibility. Estimators are trained and tested using experimental data obtained from a comprehensive wave tank campaign emulating diverse sea state conditions. The results demonstrate that architectures incorporating temporal considerations achieve superior performance, particularly under wide-banded sea states. A comparative analysis with a model-based estimator, implemented via a Kalman–Bucy Filter with a harmonic oscillator expansion, highlights the advantages of neural networks, especially under challenging conditions where model-based approaches face significant limitations. These findings underscore the capability of data-based strategies to reduce dependence on potentially complex and uncertain analytical models, offering a promising alternative for improving WEC control systems.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Wave energy converters  
dc.subject
Wave excitation force  
dc.subject
Data-based estimation  
dc.subject
Artificial neural networks  
dc.subject.classification
Sistemas de Automatización y Control  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Comparative evaluation of data-based estimators for wave-induced force in wave energy converters  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-11-14T12:35:01Z  
dc.journal.pagination
1-14  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Saavedra, Marcos David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina  
dc.description.fil
Fil: Faedo, Nicolás Ezequiel. Politecnico di Torino; Italia  
dc.description.fil
Fil: Inthamoussou, Fernando Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina  
dc.description.fil
Fil: Mosquera, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina  
dc.description.fil
Fil: Garelli, Fabricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina  
dc.journal.title
Journal of Ocean Engineering and Marine Energy  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s40722-025-00427-4  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s40722-025-00427-4