Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Comparative evaluation of data-based estimators for wave-induced force in wave energy converters

Saavedra, Marcos DavidIcon ; Faedo, Nicolás Ezequiel; Inthamoussou, Fernando ArielIcon ; Mosquera, FacundoIcon ; Garelli, FabricioIcon
Fecha de publicación: 09/2025
Editorial: Springer
Revista: Journal of Ocean Engineering and Marine Energy
ISSN: 2198-6452
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Sistemas de Automatización y Control

Resumen

Wave energy conversion technology emerges as a promising approach to renewable energy generation, offering a consistent and predictable power source that complements intermittent renewable energy sources such as solar and wind power. Achieving optimal ocean wave energy absorption requires precise knowledge of the so-called wave excitation force, which is typically estimated through model-based techniques reliant on accurate system descriptions. However, uncertainties inherent to hydrodynamic modelling often limit the reliability of these approaches. To address this challenge, this paper presents a comprehensive evaluation of model-free data-based estimators, for wave excitation torque estimation in Wavestar like wave energy converters (WECs). The study examines various neural network architectures, including static models (feedforward networks) and those incorporating temporal dynamics (recurrent neural networks and long short-term memory networks). The analysis examines the impact of utilising multiple input combinations, ranging from motion variables to configurations enhanced with surrounding wave height measurements from the device’s vicinity. Input selection is guided by correlation analysis and spectral coherence evaluation to ensure physical relevance and practical feasibility. Estimators are trained and tested using experimental data obtained from a comprehensive wave tank campaign emulating diverse sea state conditions. The results demonstrate that architectures incorporating temporal considerations achieve superior performance, particularly under wide-banded sea states. A comparative analysis with a model-based estimator, implemented via a Kalman–Bucy Filter with a harmonic oscillator expansion, highlights the advantages of neural networks, especially under challenging conditions where model-based approaches face significant limitations. These findings underscore the capability of data-based strategies to reduce dependence on potentially complex and uncertain analytical models, offering a promising alternative for improving WEC control systems.
Palabras clave: Wave energy converters , Wave excitation force , Data-based estimation , Artificial neural networks
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 798.2Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/275675
URL: https://link.springer.com/10.1007/s40722-025-00427-4
DOI: http://dx.doi.org/10.1007/s40722-025-00427-4
Colecciones
Articulos(LEICI)
Articulos de INSTITUTO DE INVESTIGACIONES EN ELECTRONICA, CONTROL Y PROCESAMIENTO DE SEÑALES
Citación
Saavedra, Marcos David; Faedo, Nicolás Ezequiel; Inthamoussou, Fernando Ariel; Mosquera, Facundo; Garelli, Fabricio; Comparative evaluation of data-based estimators for wave-induced force in wave energy converters; Springer; Journal of Ocean Engineering and Marine Energy; 9-2025; 1-14
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES