Mostrar el registro sencillo del ítem
dc.contributor.author
Gauto, Víctor Hugo
dc.contributor.author
Utgés, Enid Marta
dc.contributor.author
Hervot, Elsa Ivonne
dc.contributor.author
Tenev, María Daniela
dc.contributor.author
Farías, Alejandro R.
dc.date.available
2025-11-05T09:47:02Z
dc.date.issued
2025-06
dc.identifier.citation
Gauto, Víctor Hugo; Utgés, Enid Marta; Hervot, Elsa Ivonne; Tenev, María Daniela; Farías, Alejandro R.; Turbidity Estimation by Machine Learning Modelling and Remote Sensing Techniques Applied to a Water Treatment Plant; The International Centre for Sustainable Development of Energy, Water and Environment Systems; Journal of Sustainable Development of Energy, Water and Environment Systems; 13; 2; 6-2025; 1-17
dc.identifier.issn
1848-9257
dc.identifier.uri
http://hdl.handle.net/11336/274809
dc.description.abstract
Clean water is a scarce resource, fundamental for human development and well-being. Remote sensing techniques are used to monitor and retrieve quality estimators from water bodies. In situ sampling is an essential and labour-intensive task with high costs. As an alternative, a large water quality dataset from a potabilisation plant can be beneficial to this step. Combining laboratory measurements from a water treatment plant in North-East Argentina and spectral data from the Sentinel-2 satellite platform, several regression algorithms were proposed, trained, and compared for turbidity estimation at the plant inlet water in a local river. The highest performance metrics were from a Random Forest model with a coefficient of determination close to 1 (0.913) and the lowest root-mean-squared error (143.9 nephelometric turbidity units). Global feature importance and partial dependencies profile techniques identified the most influential spectral bands. Maps and histograms were made to explore the spatial distribution of turbidity.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
The International Centre for Sustainable Development of Energy, Water and Environment Systems
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
RANDOM FOREST
dc.subject
REMOTE SENSING
dc.subject
SENTINEL-2
dc.subject
TURBIDITY
dc.subject
WATER QUALITY
dc.subject.classification
Oceanografía, Hidrología, Recursos Hídricos
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Turbidity Estimation by Machine Learning Modelling and Remote Sensing Techniques Applied to a Water Treatment Plant
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-11-04T11:25:17Z
dc.journal.volume
13
dc.journal.number
2
dc.journal.pagination
1-17
dc.journal.pais
Croacia
dc.description.fil
Fil: Gauto, Víctor Hugo. Universidad Tecnológica Nacional. Facultad Regional Resistencia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Investigación para el Desarrollo Territorial y del Hábitat Humano. Universidad Nacional del Nordeste. Facultad de Arquitectura y Urbanismo. Instituto de Investigación para el Desarrollo Territorial y del Hábitat Humano.; Argentina
dc.description.fil
Fil: Utgés, Enid Marta. Universidad Tecnológica Nacional. Facultad Regional Resistencia; Argentina
dc.description.fil
Fil: Hervot, Elsa Ivonne. Universidad Tecnológica Nacional. Facultad Regional Resistencia; Argentina
dc.description.fil
Fil: Tenev, María Daniela. Universidad Tecnológica Nacional. Facultad Regional Resistencia; Argentina
dc.description.fil
Fil: Farías, Alejandro R.. Universidad Tecnológica Nacional. Facultad Regional Resistencia; Argentina
dc.journal.title
Journal of Sustainable Development of Energy, Water and Environment Systems
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sdewes.org/jsdewes/pid13.0539
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.13044/j.sdewes.d13.0539
Archivos asociados