Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Turbidity Estimation by Machine Learning Modelling and Remote Sensing Techniques Applied to a Water Treatment Plant

Gauto, Víctor HugoIcon ; Utgés, Enid Marta; Hervot, Elsa Ivonne; Tenev, María Daniela; Farías, Alejandro R.
Fecha de publicación: 06/2025
Editorial: The International Centre for Sustainable Development of Energy, Water and Environment Systems
Revista: Journal of Sustainable Development of Energy, Water and Environment Systems
ISSN: 1848-9257
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Oceanografía, Hidrología, Recursos Hídricos

Resumen

Clean water is a scarce resource, fundamental for human development and well-being. Remote sensing techniques are used to monitor and retrieve quality estimators from water bodies. In situ sampling is an essential and labour-intensive task with high costs. As an alternative, a large water quality dataset from a potabilisation plant can be beneficial to this step. Combining laboratory measurements from a water treatment plant in North-East Argentina and spectral data from the Sentinel-2 satellite platform, several regression algorithms were proposed, trained, and compared for turbidity estimation at the plant inlet water in a local river. The highest performance metrics were from a Random Forest model with a coefficient of determination close to 1 (0.913) and the lowest root-mean-squared error (143.9 nephelometric turbidity units). Global feature importance and partial dependencies profile techniques identified the most influential spectral bands. Maps and histograms were made to explore the spatial distribution of turbidity.
Palabras clave: RANDOM FOREST , REMOTE SENSING , SENTINEL-2 , TURBIDITY , WATER QUALITY
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.444Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/274809
URL: http://www.sdewes.org/jsdewes/pid13.0539
DOI: http://dx.doi.org/10.13044/j.sdewes.d13.0539
Colecciones
Articulos(IIDTHH)
Articulos de INSTITUTO DE INVESTIGACION PARA EL DESARROLLO TERRITORIAL Y DEL HABITAT HUMANO
Citación
Gauto, Víctor Hugo; Utgés, Enid Marta; Hervot, Elsa Ivonne; Tenev, María Daniela; Farías, Alejandro R.; Turbidity Estimation by Machine Learning Modelling and Remote Sensing Techniques Applied to a Water Treatment Plant; The International Centre for Sustainable Development of Energy, Water and Environment Systems; Journal of Sustainable Development of Energy, Water and Environment Systems; 13; 2; 6-2025; 1-17
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES