Mostrar el registro sencillo del ítem

dc.contributor.author
Bartman Szwarc, Piotr  
dc.contributor.author
Ochal, Anna  
dc.contributor.author
Sofonea, Mircea  
dc.contributor.author
Tarzia, Domingo Alberto  
dc.date.available
2025-10-31T11:56:34Z  
dc.date.issued
2025-08  
dc.identifier.citation
Bartman Szwarc, Piotr; Ochal, Anna; Sofonea, Mircea; Tarzia, Domingo Alberto; A new penalty method for elliptic variational inequalities; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems-series B; 30; 11; 8-2025; 4206-4225  
dc.identifier.issn
1531-3492  
dc.identifier.uri
http://hdl.handle.net/11336/274442  
dc.description.abstract
We consider a class of elliptic variational inequalities in a reflexive Banach space X for which we recall a convergence criterion obtained in [10]. Each inequality P in the class is governed by a set of constraints K and has a unique solution u ∈ K. The criterion provides necessary and sufficient conditions which guarantee that an arbitrary sequence {un} ⊂ X converges to the solution u. Then, we consider a sequence {Pn} of unconstrained variationalhemivariational inequalities governed by a sequence of parameters {λn} ⊂ R+. We use our criterion to deduce that, if for each n ∈ N the term un represents a solution of Problem Pn, then the sequence {un} converges to u as λn → 0. We apply our abstract results in the study of an elastic frictional contact problem with unilateral constraints and provide the corresponding mechanical interpretations. We also present numerical simulation in the study of a two-dimensional example which represents an evidence of our convergence results.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Institute of Mathematical Sciences  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
PENALY METHOD  
dc.subject
VARIATIONAL INEQUALITIES  
dc.subject
CONVERGENCE ANALYSIS  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A new penalty method for elliptic variational inequalities  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-10-30T12:07:11Z  
dc.journal.volume
30  
dc.journal.number
11  
dc.journal.pagination
4206-4225  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Springfield  
dc.description.fil
Fil: Bartman Szwarc, Piotr. Jagiellonian University; Polonia  
dc.description.fil
Fil: Ochal, Anna. Jagiellonian University; Polonia  
dc.description.fil
Fil: Sofonea, Mircea. Université de Perpignan Via Domitia; Francia  
dc.description.fil
Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina  
dc.journal.title
Discrete And Continuous Dynamical Systems-series B  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org//article/doi/10.3934/dcdsb.2025021  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3934/dcdsb.2025021