Mostrar el registro sencillo del ítem
dc.contributor.author
Bartman Szwarc, Piotr
dc.contributor.author
Ochal, Anna
dc.contributor.author
Sofonea, Mircea
dc.contributor.author
Tarzia, Domingo Alberto
dc.date.available
2025-10-31T11:56:34Z
dc.date.issued
2025-08
dc.identifier.citation
Bartman Szwarc, Piotr; Ochal, Anna; Sofonea, Mircea; Tarzia, Domingo Alberto; A new penalty method for elliptic variational inequalities; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems-series B; 30; 11; 8-2025; 4206-4225
dc.identifier.issn
1531-3492
dc.identifier.uri
http://hdl.handle.net/11336/274442
dc.description.abstract
We consider a class of elliptic variational inequalities in a reflexive Banach space X for which we recall a convergence criterion obtained in [10]. Each inequality P in the class is governed by a set of constraints K and has a unique solution u ∈ K. The criterion provides necessary and sufficient conditions which guarantee that an arbitrary sequence {un} ⊂ X converges to the solution u. Then, we consider a sequence {Pn} of unconstrained variationalhemivariational inequalities governed by a sequence of parameters {λn} ⊂ R+. We use our criterion to deduce that, if for each n ∈ N the term un represents a solution of Problem Pn, then the sequence {un} converges to u as λn → 0. We apply our abstract results in the study of an elastic frictional contact problem with unilateral constraints and provide the corresponding mechanical interpretations. We also present numerical simulation in the study of a two-dimensional example which represents an evidence of our convergence results.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Institute of Mathematical Sciences
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
PENALY METHOD
dc.subject
VARIATIONAL INEQUALITIES
dc.subject
CONVERGENCE ANALYSIS
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A new penalty method for elliptic variational inequalities
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-10-30T12:07:11Z
dc.journal.volume
30
dc.journal.number
11
dc.journal.pagination
4206-4225
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Springfield
dc.description.fil
Fil: Bartman Szwarc, Piotr. Jagiellonian University; Polonia
dc.description.fil
Fil: Ochal, Anna. Jagiellonian University; Polonia
dc.description.fil
Fil: Sofonea, Mircea. Université de Perpignan Via Domitia; Francia
dc.description.fil
Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
dc.journal.title
Discrete And Continuous Dynamical Systems-series B
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org//article/doi/10.3934/dcdsb.2025021
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3934/dcdsb.2025021
Archivos asociados