Artículo
A new penalty method for elliptic variational inequalities
Fecha de publicación:
08/2025
Editorial:
American Institute of Mathematical Sciences
Revista:
Discrete And Continuous Dynamical Systems-series B
ISSN:
1531-3492
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We consider a class of elliptic variational inequalities in a reflexive Banach space X for which we recall a convergence criterion obtained in [10]. Each inequality P in the class is governed by a set of constraints K and has a unique solution u ∈ K. The criterion provides necessary and sufficient conditions which guarantee that an arbitrary sequence {un} ⊂ X converges to the solution u. Then, we consider a sequence {Pn} of unconstrained variationalhemivariational inequalities governed by a sequence of parameters {λn} ⊂ R+. We use our criterion to deduce that, if for each n ∈ N the term un represents a solution of Problem Pn, then the sequence {un} converges to u as λn → 0. We apply our abstract results in the study of an elastic frictional contact problem with unilateral constraints and provide the corresponding mechanical interpretations. We also present numerical simulation in the study of a two-dimensional example which represents an evidence of our convergence results.
Palabras clave:
PENALY METHOD
,
VARIATIONAL INEQUALITIES
,
CONVERGENCE ANALYSIS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Bartman Szwarc, Piotr; Ochal, Anna; Sofonea, Mircea; Tarzia, Domingo Alberto; A new penalty method for elliptic variational inequalities; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems-series B; 30; 11; 8-2025; 4206-4225
Compartir
Altmétricas