Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Biospeckle laser for real-time monitoring of water and food samples: Enhancing contamination detection and quality control in field applications

Nisenbaum, MelinaIcon ; Agustinelli, Silvina PaolaIcon ; Guzmán, Marcelo NicolásIcon ; Murialdo, Silvia ElenaIcon
Fecha de publicación: 05/2025
Editorial: Taylor & Francis
Revista: Instrumentation Science And Technology
ISSN: 1073-9149
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Biotecnología Industrial

Resumen

Laser Biospeckle (BSL) is a nondestructive, real-time monitoring technique that has become a critical tool for assessing water and food quality. This review highlights BSL’s effectiveness in detecting microbial contamination in water and food samples. BSL can detect bacterial contamination at concentrations as low as 2 × 108 CFU/mL within seconds, offering significant advantages over traditional plate counting methods. Additionally, it identifies fungal infections before they become visually detectable, with a sensitivity exceeding 95%. This review compares BSL performance in laboratory and field environments, focusing on microbiological detection and physicochemical parameter analysis (e.g., pH, turbidity, and conductivity), which are critical for industrial and environmental safety. The integration of artificial intelligence (AI) has significantly enhanced BSL’s capabilities, particularly in automated data analysis. AI-driven methods, such as convolutional neural networks (CNNs), achieve contamination classification accuracy above 98%, improving detection speed and reducing human intervention. Furthermore, AI enables real-time automated monitoring, essential for on-site industrial applications. This review also outlines future research directions, including portable BSL sensor development and advances in AI-driven data processing. Addressing these challenges could establish BSL as a transformative tool for food safety and environmental monitoring, enhancing consumer health and regulatory compliance.
Palabras clave: BIOSPECKLE LASER , CONTAMINATION , FIUELD APPLICATION , FOOD AND WATER QUALITY , REAL TIME MONITORING
Ver el registro completo
 
Archivos asociados
Tamaño: 1.927Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/274179
URL: https://www.tandfonline.com/doi/full/10.1080/10739149.2025.2506110
DOI: http://dx.doi.org/10.1080/10739149.2025.2506110
Colecciones
Articulos(CCT - MAR DEL PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MAR DEL PLATA
Articulos(ICYTE)
Articulos de INSTITUTO DE INVESTIGACIONES CIENTIFICAS Y TECNOLOGICAS EN ELECTRONICA
Citación
Nisenbaum, Melina; Agustinelli, Silvina Paola; Guzmán, Marcelo Nicolás; Murialdo, Silvia Elena; Biospeckle laser for real-time monitoring of water and food samples: Enhancing contamination detection and quality control in field applications; Taylor & Francis; Instrumentation Science And Technology; 5-2025; 1-35
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES