Mostrar el registro sencillo del ítem

dc.contributor.author
Trinco, Fabio Daniel  
dc.contributor.author
Rusch, Verónica Elena  
dc.contributor.author
Cardozo, Andrea  
dc.contributor.author
Garibaldi, Lucas Alejandro  
dc.contributor.author
Tittonell, Pablo  
dc.date.available
2025-10-24T16:14:46Z  
dc.date.issued
2025-05  
dc.identifier.citation
Trinco, Fabio Daniel; Rusch, Verónica Elena; Cardozo, Andrea; Garibaldi, Lucas Alejandro; Tittonell, Pablo; Remote sensing and field data show complementary functions when predicting forage productivity in heterogeneous native forests; Springer; Landscape Ecology; 40; 8; 5-2025; 1-14  
dc.identifier.issn
0921-2973  
dc.identifier.uri
http://hdl.handle.net/11336/274001  
dc.description.abstract
Native forests around the world are widelyused for livestock grazing as they offer differentsources of forage. Nevertheless, in heterogeneous forested landscapes, forage productivity drivers are stillunclear to make precise predictions of field receptivity. Our aim is to relate landscape variables with forage productivity in forested landscapes using satelliteand ground-based data. To accomplish this, we harvested 36 enclosures in two Patagonian valleys sampled over three years. The location of the enclosuresencompassed a gradient of altitude and mean annualrainfall, across three vegetation types commonlyused for cattle raising. Using a total of 108 biomasssamples, we estimated five generalized linear models to predict forage productivity using remote sensing and ground (field) data as predictors. The mostimportant variables for predicting forage productivitywere five of remote sensing type (the integrated Normalized Difference Vegetation Index, mean annualprecipitation, vegetation type, slope, slope orientation, altitude) and two of field type (canopy opennessand herbaceous layer coverage).The highest goodnessof fit was obtained when all variables were included(D2=0.71). When ground-based information wascombined with remote sensing data, the goodness offit was higher (D2=0.65) compared with models thatonly used remote data as predictors (D2=0.49). Models obtained based on remote data are a useful toolconsidering that field information may not alwaysbe available. High forage productivity levels can be obtained in high forests or scrubs with varying valuesof canopy openness, without removing the forest. Themodels generated in this work are key for livestockstocking rates adjustment in NW Patagonia forests,and may be also re-estimated with new data in otherregions used for cattle raising worldwide, contributing to the sustainable use of native forests.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BIOMASS  
dc.subject
CATTLE  
dc.subject
LIVESTOCK  
dc.subject
MULTI MODEL INFERENCE  
dc.subject
RANGELANDS  
dc.subject
STOCKING RATES  
dc.subject.classification
Ecología  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Conservación de la Biodiversidad  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Silvicultura  
dc.subject.classification
Agricultura, Silvicultura y Pesca  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Remote sensing and field data show complementary functions when predicting forage productivity in heterogeneous native forests  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-10-24T15:42:01Z  
dc.identifier.eissn
1572-9761  
dc.journal.volume
40  
dc.journal.number
8  
dc.journal.pagination
1-14  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Trinco, Fabio Daniel. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina  
dc.description.fil
Fil: Rusch, Verónica Elena. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina  
dc.description.fil
Fil: Cardozo, Andrea. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina  
dc.description.fil
Fil: Garibaldi, Lucas Alejandro. Universidad Nacional de Río Negro. Sede Andina. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones En Recursos Naturales, Agroecología y Desarrollo Rural. - Universidad Nacional de Rio Negro. Instituto de Investigaciones En Recursos Naturales, Agroecología y Desarrollo Rural; Argentina  
dc.description.fil
Fil: Tittonell, Pablo. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina  
dc.journal.title
Landscape Ecology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10980-025-02109-w  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10980-025-02109-w