Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Remote sensing and field data show complementary functions when predicting forage productivity in heterogeneous native forests

Trinco, Fabio DanielIcon ; Rusch, Verónica Elena; Cardozo, Andrea; Garibaldi, Lucas AlejandroIcon ; Tittonell, PabloIcon
Fecha de publicación: 05/2025
Editorial: Springer
Revista: Landscape Ecology
ISSN: 0921-2973
e-ISSN: 1572-9761
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ecología; Conservación de la Biodiversidad; Silvicultura

Resumen

Native forests around the world are widelyused for livestock grazing as they offer differentsources of forage. Nevertheless, in heterogeneous forested landscapes, forage productivity drivers are stillunclear to make precise predictions of field receptivity. Our aim is to relate landscape variables with forage productivity in forested landscapes using satelliteand ground-based data. To accomplish this, we harvested 36 enclosures in two Patagonian valleys sampled over three years. The location of the enclosuresencompassed a gradient of altitude and mean annualrainfall, across three vegetation types commonlyused for cattle raising. Using a total of 108 biomasssamples, we estimated five generalized linear models to predict forage productivity using remote sensing and ground (field) data as predictors. The mostimportant variables for predicting forage productivitywere five of remote sensing type (the integrated Normalized Difference Vegetation Index, mean annualprecipitation, vegetation type, slope, slope orientation, altitude) and two of field type (canopy opennessand herbaceous layer coverage).The highest goodnessof fit was obtained when all variables were included(D2=0.71). When ground-based information wascombined with remote sensing data, the goodness offit was higher (D2=0.65) compared with models thatonly used remote data as predictors (D2=0.49). Models obtained based on remote data are a useful toolconsidering that field information may not alwaysbe available. High forage productivity levels can be obtained in high forests or scrubs with varying valuesof canopy openness, without removing the forest. Themodels generated in this work are key for livestockstocking rates adjustment in NW Patagonia forests,and may be also re-estimated with new data in otherregions used for cattle raising worldwide, contributing to the sustainable use of native forests.
Palabras clave: BIOMASS , CATTLE , LIVESTOCK , MULTI MODEL INFERENCE , RANGELANDS , STOCKING RATES
Ver el registro completo
 
Archivos asociados
Tamaño: 1.913Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/274001
URL: https://link.springer.com/article/10.1007/s10980-025-02109-w
DOI: http://dx.doi.org/10.1007/s10980-025-02109-w
Colecciones
Articulos (IFAB)
Articulos de INSTITUTO DE INVESTIGACIONES FORESTALES Y AGROPECUARIAS BARILOCHE
Articulos (IRNAD)
Articulos de INSTITUTO DE INVESTIGACIONES EN RECURSOS NATURALES, AGROECOLOGIA Y DESARROLLO RURAL
Citación
Trinco, Fabio Daniel; Rusch, Verónica Elena; Cardozo, Andrea; Garibaldi, Lucas Alejandro; Tittonell, Pablo; Remote sensing and field data show complementary functions when predicting forage productivity in heterogeneous native forests; Springer; Landscape Ecology; 40; 8; 5-2025; 1-14
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES