Mostrar el registro sencillo del ítem
dc.contributor.author
Berra, Fabio Martín
dc.contributor.author
Pradolini, Gladis Guadalupe
dc.contributor.author
Quijano, Pablo
dc.date.available
2025-10-20T11:14:46Z
dc.date.issued
2025-02
dc.identifier.citation
Berra, Fabio Martín; Pradolini, Gladis Guadalupe; Quijano, Pablo; Sawyer estimates of mixed type for operators associated to a critical radius function; Universidad Complutense de Madrid; Revista Matematica Complutense; 38; 3; 2-2025; 863-891
dc.identifier.issn
1139-1138
dc.identifier.uri
http://hdl.handle.net/11336/273694
dc.description.abstract
We prove mixed inequalities for the Hardy–Littlewood maximal function Mρ ,σ , where ρ is a critical radius function and σ ≥ 0. We also exhibit and prove an extension of Cruz-Uribe,Martell and Pérez extrapolation result in Cruz-Uribe et al. (JMath IntMath Res Not 2005(30):1849–1871, 2005) to the setting of Muckenhoupt weights associated to a critical radius function ρ. This theorem allows us to give mixed inequalities for Schrödinger–Calderón–Zygmund operators, extending some previous estimates that we have already proved in Berra et al. (Potential Anal 60(1):253–283, 2024). Since we are dealing with u ∈ Aρ 1 and v ∈ Aρ ∞, the proof involves a quite subtle argument related with the original ideas from Sawyer Sawyer (Proc AmMath Soc 93(4):610–614, 1985).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Universidad Complutense de Madrid
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Schrödinger Operators
dc.subject
Muckenhoupt weights
dc.subject
Critical radius functions
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Sawyer estimates of mixed type for operators associated to a critical radius function
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-10-20T10:26:43Z
dc.journal.volume
38
dc.journal.number
3
dc.journal.pagination
863-891
dc.journal.pais
España
dc.description.fil
Fil: Berra, Fabio Martín. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
dc.description.fil
Fil: Pradolini, Gladis Guadalupe. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
dc.description.fil
Fil: Quijano, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.journal.title
Revista Matematica Complutense
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s13163-025-00519-7
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s13163-025-00519-7
Archivos asociados