Mostrar el registro sencillo del ítem

dc.contributor.author
Berra, Fabio Martín  
dc.contributor.author
Pradolini, Gladis Guadalupe  
dc.contributor.author
Quijano, Pablo  
dc.date.available
2025-10-20T11:14:46Z  
dc.date.issued
2025-02  
dc.identifier.citation
Berra, Fabio Martín; Pradolini, Gladis Guadalupe; Quijano, Pablo; Sawyer estimates of mixed type for operators associated to a critical radius function; Universidad Complutense de Madrid; Revista Matematica Complutense; 38; 3; 2-2025; 863-891  
dc.identifier.issn
1139-1138  
dc.identifier.uri
http://hdl.handle.net/11336/273694  
dc.description.abstract
We prove mixed inequalities for the Hardy–Littlewood maximal function Mρ ,σ , where ρ is a critical radius function and σ ≥ 0. We also exhibit and prove an extension of Cruz-Uribe,Martell and Pérez extrapolation result in Cruz-Uribe et al. (JMath IntMath Res Not 2005(30):1849–1871, 2005) to the setting of Muckenhoupt weights associated to a critical radius function ρ. This theorem allows us to give mixed inequalities for Schrödinger–Calderón–Zygmund operators, extending some previous estimates that we have already proved in Berra et al. (Potential Anal 60(1):253–283, 2024). Since we are dealing with u ∈ Aρ 1 and v ∈ Aρ ∞, the proof involves a quite subtle argument related with the original ideas from Sawyer Sawyer (Proc AmMath Soc 93(4):610–614, 1985).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Universidad Complutense de Madrid  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Schrödinger Operators  
dc.subject
Muckenhoupt weights  
dc.subject
Critical radius functions  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Sawyer estimates of mixed type for operators associated to a critical radius function  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-10-20T10:26:43Z  
dc.journal.volume
38  
dc.journal.number
3  
dc.journal.pagination
863-891  
dc.journal.pais
España  
dc.description.fil
Fil: Berra, Fabio Martín. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina  
dc.description.fil
Fil: Pradolini, Gladis Guadalupe. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina  
dc.description.fil
Fil: Quijano, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.journal.title
Revista Matematica Complutense  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s13163-025-00519-7  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s13163-025-00519-7