Artículo
Sawyer estimates of mixed type for operators associated to a critical radius function
Fecha de publicación:
02/2025
Editorial:
Universidad Complutense de Madrid
Revista:
Revista Matematica Complutense
ISSN:
1139-1138
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We prove mixed inequalities for the Hardy–Littlewood maximal function Mρ ,σ , where ρ is a critical radius function and σ ≥ 0. We also exhibit and prove an extension of Cruz-Uribe,Martell and Pérez extrapolation result in Cruz-Uribe et al. (JMath IntMath Res Not 2005(30):1849–1871, 2005) to the setting of Muckenhoupt weights associated to a critical radius function ρ. This theorem allows us to give mixed inequalities for Schrödinger–Calderón–Zygmund operators, extending some previous estimates that we have already proved in Berra et al. (Potential Anal 60(1):253–283, 2024). Since we are dealing with u ∈ Aρ 1 and v ∈ Aρ ∞, the proof involves a quite subtle argument related with the original ideas from Sawyer Sawyer (Proc AmMath Soc 93(4):610–614, 1985).
Palabras clave:
Schrödinger Operators
,
Muckenhoupt weights
,
Critical radius functions
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Berra, Fabio Martín; Pradolini, Gladis Guadalupe; Quijano, Pablo; Sawyer estimates of mixed type for operators associated to a critical radius function; Universidad Complutense de Madrid; Revista Matematica Complutense; 38; 3; 2-2025; 863-891
Compartir
Altmétricas