Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Comparing Statistical, Analytical, and Learning-Based Routing Approaches for Delay-Tolerant Networks

D'argenio, Pedro RubenIcon ; Fraire, Juan AndresIcon ; Hartmanns, Arnd; Raverta, Fernando DarioIcon
Fecha de publicación: 04/2025
Editorial: Association for Computing Machinery
Revista: Acm Transactions On Modeling And Computer Simulation
ISSN: 1049-3301
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

In delay-tolerant networks (DTNs) with uncertain contact plans, the communication episodes and their reliabilities are known a priori. To maximise the end-to-end delivery probability, a bounded network-wide number of message copies are allowed. The resulting multi-copy routing optimization problem is naturally modelled as a Markov decision process with distributed information. In this paper, we provide an in-depth comparison of three solution approaches: statistical model checking with scheduler sampling, the analytical RUCoP algorithm based on probabilistic model checking, and an implementation of concurrent Q-learning. We use an extensive benchmark set comprising random networks, scalable binomial topologies, and realistic ring-road low Earth orbit satellite networks. We evaluate the obtained message delivery probabilities as well as the computational effort. Our results show that all three approaches are suitable tools for obtaining reliable routes in DTN, and expose a tradeoff between scalability and solution quality.
Palabras clave: DELAY TOLERANT NETWORKS , STATISTICAL MODEL CHECKING , Q-LEARNING , ROUTING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.450Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/273623
URL: https://dl.acm.org/doi/10.1145/3665927
DOI: http://dx.doi.org/10.1145/3665927
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
D'argenio, Pedro Ruben; Fraire, Juan Andres; Hartmanns, Arnd; Raverta, Fernando Dario; Comparing Statistical, Analytical, and Learning-Based Routing Approaches for Delay-Tolerant Networks; Association for Computing Machinery; Acm Transactions On Modeling And Computer Simulation; 35; 2; 4-2025; 1-26
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES