Mostrar el registro sencillo del ítem
dc.contributor.author
D'argenio, Pedro Ruben
dc.contributor.author
Fraire, Juan Andres
dc.contributor.author
Hartmanns, Arnd
dc.contributor.author
Raverta, Fernando Dario
dc.date.available
2025-10-17T11:36:33Z
dc.date.issued
2025-04
dc.identifier.citation
D'argenio, Pedro Ruben; Fraire, Juan Andres; Hartmanns, Arnd; Raverta, Fernando Dario; Comparing Statistical, Analytical, and Learning-Based Routing Approaches for Delay-Tolerant Networks; Association for Computing Machinery; Acm Transactions On Modeling And Computer Simulation; 35; 2; 4-2025; 1-26
dc.identifier.issn
1049-3301
dc.identifier.uri
http://hdl.handle.net/11336/273623
dc.description.abstract
In delay-tolerant networks (DTNs) with uncertain contact plans, the communication episodes and their reliabilities are known a priori. To maximise the end-to-end delivery probability, a bounded network-wide number of message copies are allowed. The resulting multi-copy routing optimization problem is naturally modelled as a Markov decision process with distributed information. In this paper, we provide an in-depth comparison of three solution approaches: statistical model checking with scheduler sampling, the analytical RUCoP algorithm based on probabilistic model checking, and an implementation of concurrent Q-learning. We use an extensive benchmark set comprising random networks, scalable binomial topologies, and realistic ring-road low Earth orbit satellite networks. We evaluate the obtained message delivery probabilities as well as the computational effort. Our results show that all three approaches are suitable tools for obtaining reliable routes in DTN, and expose a tradeoff between scalability and solution quality.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Association for Computing Machinery
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
DELAY TOLERANT NETWORKS
dc.subject
STATISTICAL MODEL CHECKING
dc.subject
Q-LEARNING
dc.subject
ROUTING
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Comparing Statistical, Analytical, and Learning-Based Routing Approaches for Delay-Tolerant Networks
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-10-16T10:42:02Z
dc.journal.volume
35
dc.journal.number
2
dc.journal.pagination
1-26
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: D'argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
dc.description.fil
Fil: Fraire, Juan Andres. Institut National de Recherche en Informatique et en Automatique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina
dc.description.fil
Fil: Hartmanns, Arnd. Universiteit Twente (ut);
dc.description.fil
Fil: Raverta, Fernando Dario. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
dc.journal.title
Acm Transactions On Modeling And Computer Simulation
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://dl.acm.org/doi/10.1145/3665927
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1145/3665927
Archivos asociados