Mostrar el registro sencillo del ítem

dc.contributor.author
D'argenio, Pedro Ruben  
dc.contributor.author
Fraire, Juan Andres  
dc.contributor.author
Hartmanns, Arnd  
dc.contributor.author
Raverta, Fernando Dario  
dc.date.available
2025-10-17T11:36:33Z  
dc.date.issued
2025-04  
dc.identifier.citation
D'argenio, Pedro Ruben; Fraire, Juan Andres; Hartmanns, Arnd; Raverta, Fernando Dario; Comparing Statistical, Analytical, and Learning-Based Routing Approaches for Delay-Tolerant Networks; Association for Computing Machinery; Acm Transactions On Modeling And Computer Simulation; 35; 2; 4-2025; 1-26  
dc.identifier.issn
1049-3301  
dc.identifier.uri
http://hdl.handle.net/11336/273623  
dc.description.abstract
In delay-tolerant networks (DTNs) with uncertain contact plans, the communication episodes and their reliabilities are known a priori. To maximise the end-to-end delivery probability, a bounded network-wide number of message copies are allowed. The resulting multi-copy routing optimization problem is naturally modelled as a Markov decision process with distributed information. In this paper, we provide an in-depth comparison of three solution approaches: statistical model checking with scheduler sampling, the analytical RUCoP algorithm based on probabilistic model checking, and an implementation of concurrent Q-learning. We use an extensive benchmark set comprising random networks, scalable binomial topologies, and realistic ring-road low Earth orbit satellite networks. We evaluate the obtained message delivery probabilities as well as the computational effort. Our results show that all three approaches are suitable tools for obtaining reliable routes in DTN, and expose a tradeoff between scalability and solution quality.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Association for Computing Machinery  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
DELAY TOLERANT NETWORKS  
dc.subject
STATISTICAL MODEL CHECKING  
dc.subject
Q-LEARNING  
dc.subject
ROUTING  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Comparing Statistical, Analytical, and Learning-Based Routing Approaches for Delay-Tolerant Networks  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-10-16T10:42:02Z  
dc.journal.volume
35  
dc.journal.number
2  
dc.journal.pagination
1-26  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: D'argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina  
dc.description.fil
Fil: Fraire, Juan Andres. Institut National de Recherche en Informatique et en Automatique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina  
dc.description.fil
Fil: Hartmanns, Arnd. Universiteit Twente (ut);  
dc.description.fil
Fil: Raverta, Fernando Dario. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina  
dc.journal.title
Acm Transactions On Modeling And Computer Simulation  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://dl.acm.org/doi/10.1145/3665927  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1145/3665927