Mostrar el registro sencillo del ítem

dc.contributor.author
Forzani, Liliana Maria  
dc.contributor.author
Rodriguez, Daniela  
dc.contributor.author
Sued, Raquel Mariela  
dc.date.available
2025-10-15T13:31:07Z  
dc.date.issued
2025-02  
dc.identifier.citation
Forzani, Liliana Maria; Rodriguez, Daniela; Sued, Raquel Mariela; A penalization method to estimate the intrinsic dimensionality of data; Springer; Statistical Papers; 66; 2; 2-2025; 1-20  
dc.identifier.issn
0932-5026  
dc.identifier.uri
http://hdl.handle.net/11336/273519  
dc.description.abstract
We propose a novel penalization method for estimating the intrinsic dimensionality of data within a Probabilistic Principal Components Model, extending beyond the Gaussian case. Unlike existing approaches, our method is designed to handle nonnormal data, providing a flexible alternative to traditional factor models. Our procedure identifies the dimension at which the eigenvalues of a scatter matrix stabilize. We establish the consistency of the procedure under mild conditions and demonstrate its robustness across a range of data distributions. A comparative analysis highlights its advantages over existing techniques, making it a valuable tool for dimensionality estimation without relying on distributional assumptions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Intrinsic dimensionality  
dc.subject
Probabilistic principal components analysis  
dc.subject
Dimension reduction  
dc.subject
Sufficient dimension reduction  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A penalization method to estimate the intrinsic dimensionality of data  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-10-14T12:59:53Z  
dc.journal.volume
66  
dc.journal.number
2  
dc.journal.pagination
1-20  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Forzani, Liliana Maria. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina  
dc.description.fil
Fil: Rodriguez, Daniela. Universidad Torcuato Di Tella; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina  
dc.description.fil
Fil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina  
dc.journal.title
Statistical Papers  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s00362-025-01667-0  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00362-025-01667-0