Artículo
A penalization method to estimate the intrinsic dimensionality of data
Fecha de publicación:
02/2025
Editorial:
Springer
Revista:
Statistical Papers
ISSN:
0932-5026
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We propose a novel penalization method for estimating the intrinsic dimensionality of data within a Probabilistic Principal Components Model, extending beyond the Gaussian case. Unlike existing approaches, our method is designed to handle nonnormal data, providing a flexible alternative to traditional factor models. Our procedure identifies the dimension at which the eigenvalues of a scatter matrix stabilize. We establish the consistency of the procedure under mild conditions and demonstrate its robustness across a range of data distributions. A comparative analysis highlights its advantages over existing techniques, making it a valuable tool for dimensionality estimation without relying on distributional assumptions.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Articulos de INSTITUTO DE CALCULO
Citación
Forzani, Liliana Maria; Rodriguez, Daniela; Sued, Raquel Mariela; A penalization method to estimate the intrinsic dimensionality of data; Springer; Statistical Papers; 66; 2; 2-2025; 1-20
Compartir
Altmétricas