Mostrar el registro sencillo del ítem

dc.contributor.author
Gómez, Julián Luis  
dc.contributor.author
Lothe, Ane Elisabet  
dc.date.available
2025-10-03T14:27:47Z  
dc.date.issued
2025-09  
dc.identifier.citation
Gómez, Julián Luis; Lothe, Ane Elisabet; De-risking overburden and caprocks for CO2 storage using machine-learning seismic fault attributes; Elsevier; International Journal of Greenhouse Gas Control; 147; 9-2025; 1-14  
dc.identifier.issn
1750-5836  
dc.identifier.uri
http://hdl.handle.net/11336/272756  
dc.description.abstract
Fault and fracture geometries, densities, and distributions play a critical role in assessing and mitigating risks associated with potential CO₂ storage sites in sedimentary basins, particularly saline aquifers. To enhance fault detection in 3D seismic data, we have developed, trained, and deployed a lightweight machine learning segmentation algorithm. This deep learning model, trained on synthetic seismic data, generates fault scores—pixel-scale classifications ranging from 0 to 1—where higher values indicate a greater likelihood of structural discontinuities. These fault scores are used to derive a fault density attribute, which summarizes the expected fault network distribution along seismic sections. Our workflow is computationally efficient and provides interpreters with valuable insight into the lateral and vertical distribution of faults. We apply this methodology to a 3D seismic survey of the Smeaheia area, Norway, covering the N-S trending Vette Fault and sections of the Øygarden Fault Complex (ØFC). Fault mapping was conducted at the reservoir level, as well as in the caprock and overburden. The detected fault patterns at the top of the Draupne Formation, the presumed caprock unit in the region, and fault pattern at the Top Cromer Knoll Group, align well with manual interpretations. Additionally, in the footwall of the deep-crustal ØFC, we identify faults extending to the seafloor, suggesting that a non-negligible fault density may be present within the caprock. Our results are compared with 3D variance and 3D semblance seismic attributes, further validating the efficacy of our approach.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
CO2 STORAGE  
dc.subject
CAPROCK AND OVERBURDEN  
dc.subject
MACHINE LEARNING  
dc.subject
FAULTS AND FRACTURES  
dc.subject.classification
Geoquímica y Geofísica  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
De-risking overburden and caprocks for CO2 storage using machine-learning seismic fault attributes  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-10-03T11:55:03Z  
dc.journal.volume
147  
dc.journal.pagination
1-14  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Gómez, Julián Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. YPF - Tecnología; Argentina  
dc.description.fil
Fil: Lothe, Ane Elisabet. No especifíca;  
dc.journal.title
International Journal of Greenhouse Gas Control  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1750583625001690  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ijggc.2025.104471