Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

De-risking overburden and caprocks for CO2 storage using machine-learning seismic fault attributes

Gómez, Julián LuisIcon ; Lothe, Ane Elisabet
Fecha de publicación: 09/2025
Editorial: Elsevier
Revista: International Journal of Greenhouse Gas Control
ISSN: 1750-5836
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Geoquímica y Geofísica

Resumen

Fault and fracture geometries, densities, and distributions play a critical role in assessing and mitigating risks associated with potential CO₂ storage sites in sedimentary basins, particularly saline aquifers. To enhance fault detection in 3D seismic data, we have developed, trained, and deployed a lightweight machine learning segmentation algorithm. This deep learning model, trained on synthetic seismic data, generates fault scores—pixel-scale classifications ranging from 0 to 1—where higher values indicate a greater likelihood of structural discontinuities. These fault scores are used to derive a fault density attribute, which summarizes the expected fault network distribution along seismic sections. Our workflow is computationally efficient and provides interpreters with valuable insight into the lateral and vertical distribution of faults. We apply this methodology to a 3D seismic survey of the Smeaheia area, Norway, covering the N-S trending Vette Fault and sections of the Øygarden Fault Complex (ØFC). Fault mapping was conducted at the reservoir level, as well as in the caprock and overburden. The detected fault patterns at the top of the Draupne Formation, the presumed caprock unit in the region, and fault pattern at the Top Cromer Knoll Group, align well with manual interpretations. Additionally, in the footwall of the deep-crustal ØFC, we identify faults extending to the seafloor, suggesting that a non-negligible fault density may be present within the caprock. Our results are compared with 3D variance and 3D semblance seismic attributes, further validating the efficacy of our approach.
Palabras clave: CO2 STORAGE , CAPROCK AND OVERBURDEN , MACHINE LEARNING , FAULTS AND FRACTURES
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 27.71Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/272756
URL: https://linkinghub.elsevier.com/retrieve/pii/S1750583625001690
DOI: http://dx.doi.org/10.1016/j.ijggc.2025.104471
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Gómez, Julián Luis; Lothe, Ane Elisabet; De-risking overburden and caprocks for CO2 storage using machine-learning seismic fault attributes; Elsevier; International Journal of Greenhouse Gas Control; 147; 9-2025; 1-14
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES