Mostrar el registro sencillo del ítem
dc.contributor.author
de Andrade Moura, Thais
dc.contributor.author
Ojanguren Affilastro, Andres Alejandro

dc.contributor.author
Sasa, Mahmood
dc.contributor.author
Gutiérrez, José María
dc.contributor.author
Silva, Franciely Fernanda
dc.contributor.author
Siqueira Silva, Tuany
dc.contributor.author
Martinez, Pablo Ariel
dc.date.available
2025-09-30T13:11:07Z
dc.date.issued
2025-04
dc.identifier.citation
de Andrade Moura, Thais; Ojanguren Affilastro, Andres Alejandro; Sasa, Mahmood; Gutiérrez, José María; Silva, Franciely Fernanda; et al.; AI models uncover factors influencing scorpionism in Northern Brazil; Pergamon-Elsevier Science Ltd; Toxicon; 258; 4-2025; 1-7
dc.identifier.issn
0041-0101
dc.identifier.uri
http://hdl.handle.net/11336/272337
dc.description.abstract
Envenomation by scorpion stings is a serious public health problem in tropical regions of the world. In Brazil’s Northern region, there has been a significant increase in cases over the last decade, accompanied by a rise in the fatality rate. Climate change and intensive land use are altering the distribution of species that pose health risks and may be associated with the increased incidence of accidents. We integrated species distribution models (SDMs) of three medically important species (Tityus obscurus, T. metuendus, and T. silvestris), bioclimatic data, and land use to predict scorpionism incidence and quantify the importance of predictors in Northern Brazil. We used these predictors to build a model to predict the incidence of scorpion envenomations using the XGBoost artificialintelligence (AI) algorithm and assessed the importance of the predictor variables with the Shapley method. Our models demonstrated good performance in predicting incidence, with a MAE of 7.17 and an RMSE of 10.62. The analysis identified that climatic factors are the main determinants of incidence but also highlighted the relevance of the distribution of T. obscurus and T. silvestris species, pasture areas, and rural population density. The study showed that integrating SDMs and AI techniques is effective for predicting scorpionism incidence and assisting in the formulation of prevention as well as management strategies.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Amazonian
dc.subject
Rural population
dc.subject
Shapley
dc.subject
Species distribution models
dc.subject
tityus
dc.subject.classification
Otros Tópicos Biológicos

dc.subject.classification
Ciencias Biológicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
AI models uncover factors influencing scorpionism in Northern Brazil
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-09-30T11:51:09Z
dc.journal.volume
258
dc.journal.pagination
1-7
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: de Andrade Moura, Thais. Universidade Federal de Sergipe; Brasil
dc.description.fil
Fil: Ojanguren Affilastro, Andres Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia". Departamento de Invertebrados. Area de Entomologia; Argentina
dc.description.fil
Fil: Sasa, Mahmood. Universidad de Costa Rica; Costa Rica
dc.description.fil
Fil: Gutiérrez, José María. Universidad de Costa Rica; Costa Rica
dc.description.fil
Fil: Silva, Franciely Fernanda. Universidade Federal de Sergipe; Brasil
dc.description.fil
Fil: Siqueira Silva, Tuany. Universidade Federal de Sergipe; Brasil
dc.description.fil
Fil: Martinez, Pablo Ariel. Universidade Federal de Sergipe; Brasil
dc.journal.title
Toxicon

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0041010125001163
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.toxicon.2025.108342
Archivos asociados