Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

AI models uncover factors influencing scorpionism in Northern Brazil

de Andrade Moura, Thais; Ojanguren Affilastro, Andres AlejandroIcon ; Sasa, Mahmood; Gutiérrez, José María; Silva, Franciely Fernanda; Siqueira Silva, Tuany; Martinez, Pablo Ariel
Fecha de publicación: 04/2025
Editorial: Pergamon-Elsevier Science Ltd
Revista: Toxicon
ISSN: 0041-0101
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otros Tópicos Biológicos

Resumen

Envenomation by scorpion stings is a serious public health problem in tropical regions of the world. In Brazil’s Northern region, there has been a significant increase in cases over the last decade, accompanied by a rise in the fatality rate. Climate change and intensive land use are altering the distribution of species that pose health risks and may be associated with the increased incidence of accidents. We integrated species distribution models (SDMs) of three medically important species (Tityus obscurus, T. metuendus, and T. silvestris), bioclimatic data, and land use to predict scorpionism incidence and quantify the importance of predictors in Northern Brazil. We used these predictors to build a model to predict the incidence of scorpion envenomations using the XGBoost artificialintelligence (AI) algorithm and assessed the importance of the predictor variables with the Shapley method. Our models demonstrated good performance in predicting incidence, with a MAE of 7.17 and an RMSE of 10.62. The analysis identified that climatic factors are the main determinants of incidence but also highlighted the relevance of the distribution of T. obscurus and T. silvestris species, pasture areas, and rural population density. The study showed that integrating SDMs and AI techniques is effective for predicting scorpionism incidence and assisting in the formulation of prevention as well as management strategies.
Palabras clave: Amazonian , Rural population , Shapley , Species distribution models , tityus
Ver el registro completo
 
Archivos asociados
Tamaño: 2.096Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/272337
URL: https://linkinghub.elsevier.com/retrieve/pii/S0041010125001163
DOI: http://dx.doi.org/10.1016/j.toxicon.2025.108342
Colecciones
Articulos(MACNBR)
Articulos de MUSEO ARG.DE CS.NAT "BERNARDINO RIVADAVIA"
Citación
de Andrade Moura, Thais; Ojanguren Affilastro, Andres Alejandro; Sasa, Mahmood; Gutiérrez, José María; Silva, Franciely Fernanda; et al.; AI models uncover factors influencing scorpionism in Northern Brazil; Pergamon-Elsevier Science Ltd; Toxicon; 258; 4-2025; 1-7
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES