Artículo
AI models uncover factors influencing scorpionism in Northern Brazil
de Andrade Moura, Thais; Ojanguren Affilastro, Andres Alejandro
; Sasa, Mahmood; Gutiérrez, José María; Silva, Franciely Fernanda; Siqueira Silva, Tuany; Martinez, Pablo Ariel

Fecha de publicación:
04/2025
Editorial:
Pergamon-Elsevier Science Ltd
Revista:
Toxicon
ISSN:
0041-0101
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Envenomation by scorpion stings is a serious public health problem in tropical regions of the world. In Brazil’s Northern region, there has been a significant increase in cases over the last decade, accompanied by a rise in the fatality rate. Climate change and intensive land use are altering the distribution of species that pose health risks and may be associated with the increased incidence of accidents. We integrated species distribution models (SDMs) of three medically important species (Tityus obscurus, T. metuendus, and T. silvestris), bioclimatic data, and land use to predict scorpionism incidence and quantify the importance of predictors in Northern Brazil. We used these predictors to build a model to predict the incidence of scorpion envenomations using the XGBoost artificialintelligence (AI) algorithm and assessed the importance of the predictor variables with the Shapley method. Our models demonstrated good performance in predicting incidence, with a MAE of 7.17 and an RMSE of 10.62. The analysis identified that climatic factors are the main determinants of incidence but also highlighted the relevance of the distribution of T. obscurus and T. silvestris species, pasture areas, and rural population density. The study showed that integrating SDMs and AI techniques is effective for predicting scorpionism incidence and assisting in the formulation of prevention as well as management strategies.
Palabras clave:
Amazonian
,
Rural population
,
Shapley
,
Species distribution models
,
tityus
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(MACNBR)
Articulos de MUSEO ARG.DE CS.NAT "BERNARDINO RIVADAVIA"
Articulos de MUSEO ARG.DE CS.NAT "BERNARDINO RIVADAVIA"
Citación
de Andrade Moura, Thais; Ojanguren Affilastro, Andres Alejandro; Sasa, Mahmood; Gutiérrez, José María; Silva, Franciely Fernanda; et al.; AI models uncover factors influencing scorpionism in Northern Brazil; Pergamon-Elsevier Science Ltd; Toxicon; 258; 4-2025; 1-7
Compartir
Altmétricas