Mostrar el registro sencillo del ítem

dc.contributor.author
Accinelli, Elvio  
dc.contributor.author
Afsar, Atefeh  
dc.contributor.author
Martins, Filipe  
dc.contributor.author
Martins, José  
dc.contributor.author
Oliveira, Bruno M.P.M.  
dc.contributor.author
Oviedo, Jorge Armando  
dc.contributor.author
Pinto, Alberto A.  
dc.contributor.author
Quintas, Luis Guillermo  
dc.date.available
2025-09-26T13:59:20Z  
dc.date.issued
2025-01  
dc.identifier.citation
Accinelli, Elvio; Afsar, Atefeh; Martins, Filipe; Martins, José; Oliveira, Bruno M.P.M.; et al.; Barrett's paradox of cooperation in the case of quasi‐linear utilities; John Wiley & Sons Ltd; Mathematical Methods In The Applied Sciences; 48; 2; 1-2025; 2493-2516  
dc.identifier.issn
0170-4214  
dc.identifier.uri
http://hdl.handle.net/11336/272046  
dc.description.abstract
This paper fits in the theory of international agreements by studying the success of stable coalitions of agents seeking the preservation of a public good. Extending Baliga and Maskin, we consider a model of N homogeneous agents with quasi-linear utilities of the form u(r;r) = r − r, where r is the aggregate contribution and the exponent is the elasticity of the gross utility. When the value of the elasticity increases in its natural range (0, 1), we prove the following five main results in the formation of stable coalitions: (i) the gap of cooperation, characterized as the ratio of the welfare of the grand coalition to the welfare of the competitive singleton coalition grows to infinity, which we interpret as a measure of the urge or need to save the public good; (ii) the size of stable coalitions increases from 1 up to N; (iii) the ratio of the welfare of stable coalitions to the welfare of the competitive singleton coalition grows to infinity; (iv) the ratio of the welfare of stable coalitions to the welfare of the grand coalition “decreases” (a lot), up to when the number of members of the stable coalition is approximately N∕e and after that it “increases” (a lot); and (v) the growth of stable coalitions occurs with a much greater loss of the coalition members when compared with free-riders. Result (v) has two major drawbacks: (a) A priori, it is difficult to “convince” agents to be members of the stable coalition and (b) together with results (i) and (iv), it explains and leads to the “pessimistic” Barrett's paradox of cooperation, even in a case not much considered in the literature: The ratio of the welfare of the stable coalitions against the welfare of the grand coalition is small, even in the extreme case where there are few (or a single) free-riders and the gap of cooperation is large. “Optimistically,” result (iii) shows that stable coalitions do much better than the competitive singleton coalition. Furthermore, result (ii) proves that the paradox of cooperation is resolved for larger values of so that the grand coalition is stabilized.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
John Wiley & Sons Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
COALITIONS  
dc.subject
FREE-RIDING  
dc.subject
PARADOX OF COOPERATION  
dc.subject
PUBLIC AND COMMON GOODS  
dc.subject.classification
Otras Matemáticas  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Barrett's paradox of cooperation in the case of quasi‐linear utilities  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-09-15T12:51:36Z  
dc.journal.volume
48  
dc.journal.number
2  
dc.journal.pagination
2493-2516  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Accinelli, Elvio. Universidad Autónoma de San Luis Potosí; México  
dc.description.fil
Fil: Afsar, Atefeh. Allen University; Estados Unidos  
dc.description.fil
Fil: Martins, Filipe. Universidad de Porto; Portugal. Polytechnic of Leiria; Portugal  
dc.description.fil
Fil: Martins, José. Universidad de Porto; Portugal. Polytechnic of Leiria; Portugal  
dc.description.fil
Fil: Oliveira, Bruno M.P.M.. Universidad de Porto; Portugal  
dc.description.fil
Fil: Oviedo, Jorge Armando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina  
dc.description.fil
Fil: Pinto, Alberto A.. Universidad de Porto; Portugal  
dc.description.fil
Fil: Quintas, Luis Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina  
dc.journal.title
Mathematical Methods In The Applied Sciences  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/mma.10447  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/mma.10447