Mostrar el registro sencillo del ítem
dc.contributor.author
Accinelli, Elvio
dc.contributor.author
Afsar, Atefeh
dc.contributor.author
Martins, Filipe
dc.contributor.author
Martins, José
dc.contributor.author
Oliveira, Bruno M.P.M.
dc.contributor.author
Oviedo, Jorge Armando
dc.contributor.author
Pinto, Alberto A.
dc.contributor.author
Quintas, Luis Guillermo
dc.date.available
2025-09-26T13:59:20Z
dc.date.issued
2025-01
dc.identifier.citation
Accinelli, Elvio; Afsar, Atefeh; Martins, Filipe; Martins, José; Oliveira, Bruno M.P.M.; et al.; Barrett's paradox of cooperation in the case of quasi‐linear utilities; John Wiley & Sons Ltd; Mathematical Methods In The Applied Sciences; 48; 2; 1-2025; 2493-2516
dc.identifier.issn
0170-4214
dc.identifier.uri
http://hdl.handle.net/11336/272046
dc.description.abstract
This paper fits in the theory of international agreements by studying the success of stable coalitions of agents seeking the preservation of a public good. Extending Baliga and Maskin, we consider a model of N homogeneous agents with quasi-linear utilities of the form u(r;r) = r − r, where r is the aggregate contribution and the exponent is the elasticity of the gross utility. When the value of the elasticity increases in its natural range (0, 1), we prove the following five main results in the formation of stable coalitions: (i) the gap of cooperation, characterized as the ratio of the welfare of the grand coalition to the welfare of the competitive singleton coalition grows to infinity, which we interpret as a measure of the urge or need to save the public good; (ii) the size of stable coalitions increases from 1 up to N; (iii) the ratio of the welfare of stable coalitions to the welfare of the competitive singleton coalition grows to infinity; (iv) the ratio of the welfare of stable coalitions to the welfare of the grand coalition “decreases” (a lot), up to when the number of members of the stable coalition is approximately N∕e and after that it “increases” (a lot); and (v) the growth of stable coalitions occurs with a much greater loss of the coalition members when compared with free-riders. Result (v) has two major drawbacks: (a) A priori, it is difficult to “convince” agents to be members of the stable coalition and (b) together with results (i) and (iv), it explains and leads to the “pessimistic” Barrett's paradox of cooperation, even in a case not much considered in the literature: The ratio of the welfare of the stable coalitions against the welfare of the grand coalition is small, even in the extreme case where there are few (or a single) free-riders and the gap of cooperation is large. “Optimistically,” result (iii) shows that stable coalitions do much better than the competitive singleton coalition. Furthermore, result (ii) proves that the paradox of cooperation is resolved for larger values of so that the grand coalition is stabilized.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
John Wiley & Sons Ltd
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
COALITIONS
dc.subject
FREE-RIDING
dc.subject
PARADOX OF COOPERATION
dc.subject
PUBLIC AND COMMON GOODS
dc.subject.classification
Otras Matemáticas
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Barrett's paradox of cooperation in the case of quasi‐linear utilities
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-09-15T12:51:36Z
dc.journal.volume
48
dc.journal.number
2
dc.journal.pagination
2493-2516
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Accinelli, Elvio. Universidad Autónoma de San Luis Potosí; México
dc.description.fil
Fil: Afsar, Atefeh. Allen University; Estados Unidos
dc.description.fil
Fil: Martins, Filipe. Universidad de Porto; Portugal. Polytechnic of Leiria; Portugal
dc.description.fil
Fil: Martins, José. Universidad de Porto; Portugal. Polytechnic of Leiria; Portugal
dc.description.fil
Fil: Oliveira, Bruno M.P.M.. Universidad de Porto; Portugal
dc.description.fil
Fil: Oviedo, Jorge Armando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
dc.description.fil
Fil: Pinto, Alberto A.. Universidad de Porto; Portugal
dc.description.fil
Fil: Quintas, Luis Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
dc.journal.title
Mathematical Methods In The Applied Sciences
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/mma.10447
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/mma.10447
Archivos asociados