Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Barrett's paradox of cooperation in the case of quasi‐linear utilities

Accinelli, Elvio; Afsar, Atefeh; Martins, Filipe; Martins, José; Oliveira, Bruno M.P.M.; Oviedo, Jorge ArmandoIcon ; Pinto, Alberto A.; Quintas, Luis GuillermoIcon
Fecha de publicación: 01/2025
Editorial: John Wiley & Sons Ltd
Revista: Mathematical Methods In The Applied Sciences
ISSN: 0170-4214
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Matemáticas

Resumen

This paper fits in the theory of international agreements by studying the success of stable coalitions of agents seeking the preservation of a public good. Extending Baliga and Maskin, we consider a model of N homogeneous agents with quasi-linear utilities of the form u(r;r) = r − r, where r is the aggregate contribution and the exponent is the elasticity of the gross utility. When the value of the elasticity increases in its natural range (0, 1), we prove the following five main results in the formation of stable coalitions: (i) the gap of cooperation, characterized as the ratio of the welfare of the grand coalition to the welfare of the competitive singleton coalition grows to infinity, which we interpret as a measure of the urge or need to save the public good; (ii) the size of stable coalitions increases from 1 up to N; (iii) the ratio of the welfare of stable coalitions to the welfare of the competitive singleton coalition grows to infinity; (iv) the ratio of the welfare of stable coalitions to the welfare of the grand coalition “decreases” (a lot), up to when the number of members of the stable coalition is approximately N∕e and after that it “increases” (a lot); and (v) the growth of stable coalitions occurs with a much greater loss of the coalition members when compared with free-riders. Result (v) has two major drawbacks: (a) A priori, it is difficult to “convince” agents to be members of the stable coalition and (b) together with results (i) and (iv), it explains and leads to the “pessimistic” Barrett's paradox of cooperation, even in a case not much considered in the literature: The ratio of the welfare of the stable coalitions against the welfare of the grand coalition is small, even in the extreme case where there are few (or a single) free-riders and the gap of cooperation is large. “Optimistically,” result (iii) shows that stable coalitions do much better than the competitive singleton coalition. Furthermore, result (ii) proves that the paradox of cooperation is resolved for larger values of so that the grand coalition is stabilized.
Palabras clave: COALITIONS , FREE-RIDING , PARADOX OF COOPERATION , PUBLIC AND COMMON GOODS
Ver el registro completo
 
Archivos asociados
Tamaño: 2.188Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/272046
URL: https://onlinelibrary.wiley.com/doi/10.1002/mma.10447
DOI: http://dx.doi.org/10.1002/mma.10447
Colecciones
Articulos(IMASL)
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Citación
Accinelli, Elvio; Afsar, Atefeh; Martins, Filipe; Martins, José; Oliveira, Bruno M.P.M.; et al.; Barrett's paradox of cooperation in the case of quasi‐linear utilities; John Wiley & Sons Ltd; Mathematical Methods In The Applied Sciences; 48; 2; 1-2025; 2493-2516
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES