Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Capítulo de Libro

Assessing Disease Comorbidity in Hospital Patients through Machine Learning and Network Analysis Techniques

Título del libro: Digital Transformation in Healthcare Systems for Patient Care

Gibert García, Lázaro AlbertoIcon ; Piñero, Gustavo; Soto, Axel JuanIcon ; Maguitman, Ana GabrielaIcon ; Simari, GerardoIcon ; Chesñevar, Carlos IvánIcon ; Díaz, Gabriela AndreaIcon ; Caverzán, Esteban MarceloIcon ; Lorenzetti, Carlos MartinIcon
Fecha de publicación: 2025
Editorial: Springer
ISBN: 978-3-031-95044-5
Idioma: Inglés
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

Accurate assessment of disease comorbidity in hospital patients has always been crucial for improving treatment strategies and healthcare outcomes. In the last few years, different machine learning (ML) and network analysis (NA) techniques have been developed to enhance the detection, prediction, and understanding of comorbid conditions in hospital patients. In many cases, these techniques allow efficient identification of comorbidity from medical records, without requiring time-consuming and expensive clinical annotation, which is also prone to inconsistencies. In this chapter, we survey the state-of-the-art ML and NA techniques to improve the detection, analysis and prediction of comorbid conditions in hospital patients. We describe and compare different approaches based on ML and NA algorithms to model the complex relationships between co-occurring diseases, analyzing how different features (such as patient demographics, medical records, and laboratory results) can be used to train and optimize the associated models. We also discuss the use of different advanced techniques applied to electronic health records---such as named entity recognition (NER)---that aim to provide better interpretability of the resulting models, with direct implications for improving patient management and healthcare delivery.
Palabras clave: MACHINE LEARNING , COMORBIDITY , HEALTHCARE , EXPLAINABLE AI , DISEASE NETWORK , NETWORK ANALYSIS
Ver el registro completo
 
Archivos asociados
Tamaño: 1.163Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/271777
URL: https://link.springer.com/chapter/10.1007/978-3-031-95044-5_3
Colecciones
Capítulos de libros (ICIC)
Capítulos de libros de INSTITUTO DE CS. E INGENIERIA DE LA COMPUTACION
Capítulos de libros(CCT - BAHIA BLANCA)
Capítulos de libros de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
Gibert García, Lázaro Alberto; Piñero, Gustavo; Soto, Axel Juan; Maguitman, Ana Gabriela; Simari, Gerardo; et al.; Assessing Disease Comorbidity in Hospital Patients through Machine Learning and Network Analysis Techniques; Springer; 2025; 45-78
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES