Mostrar el registro sencillo del ítem

dc.contributor.author
la Manna, Ludmila Andrea  
dc.contributor.author
Matteucci, Silvia Diana  
dc.contributor.author
Kitzberger, Thomas  
dc.date.available
2025-09-24T11:27:40Z  
dc.date.issued
2011-03  
dc.identifier.citation
la Manna, Ludmila Andrea; Matteucci, Silvia Diana; Kitzberger, Thomas; Modelling Phytophthora disease risk in Austrocedrus chilensis forests of Patagonia; Springer; European Journal of Forest Research; 131; 2; 3-2011; 323-337  
dc.identifier.issn
1612-4669  
dc.identifier.uri
http://hdl.handle.net/11336/271727  
dc.description.abstract
Austrocedrus chilensis forests suffer from a disease caused by Phytophthora austrocedrae, which is found often in wet soils. We applied three widely used modelling techniques, with different data requirements, to model disease potential distribution under current environmental conditions: Mahalanobis distance, Maxent and Logistic regression. Each model was built using field data of health condition and landscape layers of environmental conditions (distance to streams, slope, aspect, elevation, mean annual precipitation and soil pH NaF). We compared model predictions by area under the receiver operating characteristic curve and Kappa statistics. A reasonable ability to predict observed disease distribution was found for each of the three modelling techniques. However, Maxent and Logistic regression presented the best predictive performance, with significant differences with respect to the Mahalanobis distance model. Our results suggested that if good absence data are available, Logistic regression should be used in order to better discriminate sites with high risk of disease. On the other hand, if absence data are not available or doubtful, Maxent could be a very good option. The three models predicted that around 50% (49?56%) of the currently asymptomatic forests are located on sites at risk of disease according to abiotic factors. Most of these asymptomatic forests surround the current diseased patches, at distances lower than 100 m from diseased patches. Management considerations and the scope of future studies were discussed in this article.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MAL DEL CIPRES  
dc.subject
LOGISTIC REGRESSION MODEL  
dc.subject
RISK MODEL  
dc.subject
MAHALANOBIS DISTANCE  
dc.subject.classification
Ecología  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Modelling Phytophthora disease risk in Austrocedrus chilensis forests of Patagonia  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-09-22T11:30:28Z  
dc.journal.volume
131  
dc.journal.number
2  
dc.journal.pagination
323-337  
dc.journal.pais
Alemania  
dc.description.fil
Fil: la Manna, Ludmila Andrea. Centro de Investigación y Extensión Forestal Andino Patagónico; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Matteucci, Silvia Diana. Universidad de Buenos Aires. Facultad de Arquitectura y Urbanismo. Grupo de Ecología del Paisaje y Medio Ambiente; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Kitzberger, Thomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina  
dc.journal.title
European Journal of Forest Research  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10342-011-0503-7  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10342-011-0503-7