Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Modelling Phytophthora disease risk in Austrocedrus chilensis forests of Patagonia

la Manna, Ludmila AndreaIcon ; Matteucci, Silvia DianaIcon ; Kitzberger, ThomasIcon
Fecha de publicación: 03/2011
Editorial: Springer
Revista: European Journal of Forest Research
ISSN: 1612-4669
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ecología

Resumen

Austrocedrus chilensis forests suffer from a disease caused by Phytophthora austrocedrae, which is found often in wet soils. We applied three widely used modelling techniques, with different data requirements, to model disease potential distribution under current environmental conditions: Mahalanobis distance, Maxent and Logistic regression. Each model was built using field data of health condition and landscape layers of environmental conditions (distance to streams, slope, aspect, elevation, mean annual precipitation and soil pH NaF). We compared model predictions by area under the receiver operating characteristic curve and Kappa statistics. A reasonable ability to predict observed disease distribution was found for each of the three modelling techniques. However, Maxent and Logistic regression presented the best predictive performance, with significant differences with respect to the Mahalanobis distance model. Our results suggested that if good absence data are available, Logistic regression should be used in order to better discriminate sites with high risk of disease. On the other hand, if absence data are not available or doubtful, Maxent could be a very good option. The three models predicted that around 50% (49?56%) of the currently asymptomatic forests are located on sites at risk of disease according to abiotic factors. Most of these asymptomatic forests surround the current diseased patches, at distances lower than 100 m from diseased patches. Management considerations and the scope of future studies were discussed in this article.
Palabras clave: MAL DEL CIPRES , LOGISTIC REGRESSION MODEL , RISK MODEL , MAHALANOBIS DISTANCE
Ver el registro completo
 
Archivos asociados
Tamaño: 832.3Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/271727
URL: https://link.springer.com/article/10.1007/s10342-011-0503-7
DOI: http://dx.doi.org/10.1007/s10342-011-0503-7
Colecciones
Articulos(INIBIOMA)
Articulos de INST. DE INVEST.EN BIODIVERSIDAD Y MEDIOAMBIENTE
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
la Manna, Ludmila Andrea; Matteucci, Silvia Diana; Kitzberger, Thomas; Modelling Phytophthora disease risk in Austrocedrus chilensis forests of Patagonia; Springer; European Journal of Forest Research; 131; 2; 3-2011; 323-337
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES