Mostrar el registro sencillo del ítem
dc.contributor.author
Virgens, Graziela Sória
dc.contributor.author
Teodoro, João Alfredo
dc.contributor.author
Iarussi, Emmanuel
dc.contributor.author
Rodrigues, Tiago
dc.contributor.author
Amaral, Danilo Trabuco
dc.date.available
2025-09-18T11:20:03Z
dc.date.issued
2025-08
dc.identifier.citation
Virgens, Graziela Sória; Teodoro, João Alfredo; Iarussi, Emmanuel; Rodrigues, Tiago; Amaral, Danilo Trabuco; Enhancing and advancements in deep learning for melanoma detection: A comprehensive review; Pergamon-Elsevier Science Ltd; Computers In Biology And Medicine; 194; 110533; 8-2025; 1-31
dc.identifier.issn
0010-4825
dc.identifier.uri
http://hdl.handle.net/11336/271307
dc.description.abstract
Melanoma, although not the most common skin cancer, poses a significant global health challenge, particularly in Europe, where incidence rates are high. Traditional melanoma diagnosis through biopsies can be invasive, but advancements in artificial intelligence (AI), particularly deep learning (DL), have shown promising potential for early and accurate melanoma detection through image analysis. In this systematic review, we explore the trends and gaps in the application of DL for melanoma detection, focusing on the replicability and generalization of existing models. While models trained on image databases from Europe and North America demonstrate high accuracy, their applicability to populations with different skin phototypes, such as those in Africa, Asia, and Latin America, remains limited. Since 2019, the role of DL in melanoma detection and diagnosis has gained traction, with public databases often used, such as ISIC and HAM10000. However, many studies suffer from a lack of transparency in data partitioning, leading to concerns about model overfitting and reproducibility. Usual practices, including the use of 224×224 pixel resolution for image segmentation and employing architectures like ResNet and Inception, frequently lack detailed methodological transparency, further limiting reproducibility. This review underscores the need for integrating more diverse and high-quality data to enhance the global effectiveness of DL models in melanoma diagnoses. Also key challenges, including variability in image quality and the opacity of DL models, which hinder broader clinical adoption were discussed. Finally, we recommend standardizing the databases and developing more robust and explainable models to guide future research.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
MELANOMA DETECTION
dc.subject
DEEP LEARNING
dc.subject
REVIEW
dc.subject
STATE OF THE ART
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Enhancing and advancements in deep learning for melanoma detection: A comprehensive review
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-08-18T12:24:53Z
dc.journal.volume
194
dc.journal.number
110533
dc.journal.pagination
1-31
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Virgens, Graziela Sória. Universidad Federal do Abc; Brasil
dc.description.fil
Fil: Teodoro, João Alfredo. Universidad Federal do Abc; Brasil
dc.description.fil
Fil: Iarussi, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella; Argentina. Universidad Federal do Abc; Brasil
dc.description.fil
Fil: Rodrigues, Tiago. Universidad Federal do Abc; Brasil
dc.description.fil
Fil: Amaral, Danilo Trabuco. Universidad Federal do Abc; Brasil
dc.journal.title
Computers In Biology And Medicine
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0010482525008844
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compbiomed.2025.110533
Archivos asociados