Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Enhancing and advancements in deep learning for melanoma detection: A comprehensive review

Virgens, Graziela Sória; Teodoro, João Alfredo; Iarussi, EmmanuelIcon ; Rodrigues, Tiago; Amaral, Danilo Trabuco
Fecha de publicación: 08/2025
Editorial: Pergamon-Elsevier Science Ltd
Revista: Computers In Biology And Medicine
ISSN: 0010-4825
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

Melanoma, although not the most common skin cancer, poses a significant global health challenge, particularly in Europe, where incidence rates are high. Traditional melanoma diagnosis through biopsies can be invasive, but advancements in artificial intelligence (AI), particularly deep learning (DL), have shown promising potential for early and accurate melanoma detection through image analysis. In this systematic review, we explore the trends and gaps in the application of DL for melanoma detection, focusing on the replicability and generalization of existing models. While models trained on image databases from Europe and North America demonstrate high accuracy, their applicability to populations with different skin phototypes, such as those in Africa, Asia, and Latin America, remains limited. Since 2019, the role of DL in melanoma detection and diagnosis has gained traction, with public databases often used, such as ISIC and HAM10000. However, many studies suffer from a lack of transparency in data partitioning, leading to concerns about model overfitting and reproducibility. Usual practices, including the use of 224×224 pixel resolution for image segmentation and employing architectures like ResNet and Inception, frequently lack detailed methodological transparency, further limiting reproducibility. This review underscores the need for integrating more diverse and high-quality data to enhance the global effectiveness of DL models in melanoma diagnoses. Also key challenges, including variability in image quality and the opacity of DL models, which hinder broader clinical adoption were discussed. Finally, we recommend standardizing the databases and developing more robust and explainable models to guide future research.
Palabras clave: MELANOMA DETECTION , DEEP LEARNING , REVIEW , STATE OF THE ART
Ver el registro completo
 
Archivos asociados
Tamaño: 1.690Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/271307
URL: https://linkinghub.elsevier.com/retrieve/pii/S0010482525008844
DOI: http://dx.doi.org/10.1016/j.compbiomed.2025.110533
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Virgens, Graziela Sória; Teodoro, João Alfredo; Iarussi, Emmanuel; Rodrigues, Tiago; Amaral, Danilo Trabuco; Enhancing and advancements in deep learning for melanoma detection: A comprehensive review; Pergamon-Elsevier Science Ltd; Computers In Biology And Medicine; 194; 110533; 8-2025; 1-31
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES