Mostrar el registro sencillo del ítem

dc.contributor.author
Molina, Maria Graciela  
dc.contributor.author
Namour, Jorge Habib  
dc.contributor.author
Cesaroni, Claudio  
dc.contributor.author
Spogli, Luca  
dc.contributor.author
Argüelles, Noelia Beatriz  
dc.contributor.author
Asamoah, Eric N.  
dc.date.available
2025-09-11T12:43:27Z  
dc.date.issued
2025-03  
dc.identifier.citation
Molina, Maria Graciela; Namour, Jorge Habib; Cesaroni, Claudio; Spogli, Luca; Argüelles, Noelia Beatriz; et al.; Boosting total electron content forecasting based on deep learning toward an operational service; Elsevier; Journal of Atmospheric and Solar-Terrestrial Physics; 268; 3-2025; 1-14  
dc.identifier.issn
1364-6826  
dc.identifier.uri
http://hdl.handle.net/11336/270791  
dc.description.abstract
We present a prediction model based on deep learning able to forecast ionospheric Total Electron Content at global level 24 h in advance. It has been conceived to operate under different space weather scenarios and in an operational framework. Three different deep learning (DL) techniques have been compared: Long Short Term Memory (LSTM), Gated Recurrent Units (GRU) and Convolutional Neural Networks (CNN). The modelling approach inherits by and extends what has been proposed by Cesaroni and co-authors (2020a). Specifically, the machine learning-based approach here reported is conceived to improve the first step of Cesaroni et al. (2020a), in which TEC is forecasted on 18 selected grid points of Global Ionospheric Maps (GIMs) using the geomagnetic global index Kp index as the external input.CNN models provide better predictive capabilities than LSTM and GRU, and it has more robust behaviour under different space weather conditions. We also show how all the proposed models outperform the two naive models: the so-called “frozen ionosphere” or recurrence model and a 27 days averaged model.The novelty of our approach is the operational capability based on an incremental learning method to prevent the aging of the trained models by updating the weights with little computational effort adding new information immediately after the 24-h forecasting. The improvement changed from RMSE of ∼6.5 TECu to ∼2.5 TECu.We also discuss limitations and the use of other space weather inputs (e.g. solar proxies, other geomagnetic indexes, etc) and the use of complementary data science techniques (e.g. data preparation, hyperparameter tuning, better data resolution, etc.) to enhance the forecasting in future works.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Global TEC forecasting  
dc.subject
Deep learning  
dc.subject
Incremental learning  
dc.subject
Research to operation  
dc.subject.classification
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Boosting total electron content forecasting based on deep learning toward an operational service  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-08-26T09:39:41Z  
dc.journal.volume
268  
dc.journal.pagination
1-14  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Molina, Maria Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Istituto Nazionale di Geofisica e Vulcanologia; Italia  
dc.description.fil
Fil: Namour, Jorge Habib. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina  
dc.description.fil
Fil: Cesaroni, Claudio. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Istituto Nazionale di Geofisica e Vulcanologia; Italia  
dc.description.fil
Fil: Spogli, Luca. Istituto Nazionale di Geofisica e Vulcanologia; Italia. SpacEarth Technology; Italia  
dc.description.fil
Fil: Argüelles, Noelia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina  
dc.description.fil
Fil: Asamoah, Eric N.. Istituto Nazionale di Geofisica e Vulcanologia; Italia. University of Salento; Italia  
dc.journal.title
Journal of Atmospheric and Solar-Terrestrial Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1364682625000112  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jastp.2025.106427