Mostrar el registro sencillo del ítem
dc.contributor.author
Molina, Maria Graciela
dc.contributor.author
Namour, Jorge Habib
dc.contributor.author
Cesaroni, Claudio
dc.contributor.author
Spogli, Luca
dc.contributor.author
Argüelles, Noelia Beatriz
dc.contributor.author
Asamoah, Eric N.
dc.date.available
2025-09-11T12:43:27Z
dc.date.issued
2025-03
dc.identifier.citation
Molina, Maria Graciela; Namour, Jorge Habib; Cesaroni, Claudio; Spogli, Luca; Argüelles, Noelia Beatriz; et al.; Boosting total electron content forecasting based on deep learning toward an operational service; Elsevier; Journal of Atmospheric and Solar-Terrestrial Physics; 268; 3-2025; 1-14
dc.identifier.issn
1364-6826
dc.identifier.uri
http://hdl.handle.net/11336/270791
dc.description.abstract
We present a prediction model based on deep learning able to forecast ionospheric Total Electron Content at global level 24 h in advance. It has been conceived to operate under different space weather scenarios and in an operational framework. Three different deep learning (DL) techniques have been compared: Long Short Term Memory (LSTM), Gated Recurrent Units (GRU) and Convolutional Neural Networks (CNN). The modelling approach inherits by and extends what has been proposed by Cesaroni and co-authors (2020a). Specifically, the machine learning-based approach here reported is conceived to improve the first step of Cesaroni et al. (2020a), in which TEC is forecasted on 18 selected grid points of Global Ionospheric Maps (GIMs) using the geomagnetic global index Kp index as the external input.CNN models provide better predictive capabilities than LSTM and GRU, and it has more robust behaviour under different space weather conditions. We also show how all the proposed models outperform the two naive models: the so-called “frozen ionosphere” or recurrence model and a 27 days averaged model.The novelty of our approach is the operational capability based on an incremental learning method to prevent the aging of the trained models by updating the weights with little computational effort adding new information immediately after the 24-h forecasting. The improvement changed from RMSE of ∼6.5 TECu to ∼2.5 TECu.We also discuss limitations and the use of other space weather inputs (e.g. solar proxies, other geomagnetic indexes, etc) and the use of complementary data science techniques (e.g. data preparation, hyperparameter tuning, better data resolution, etc.) to enhance the forecasting in future works.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
Global TEC forecasting
dc.subject
Deep learning
dc.subject
Incremental learning
dc.subject
Research to operation
dc.subject.classification
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Boosting total electron content forecasting based on deep learning toward an operational service
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-08-26T09:39:41Z
dc.journal.volume
268
dc.journal.pagination
1-14
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Molina, Maria Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Istituto Nazionale di Geofisica e Vulcanologia; Italia
dc.description.fil
Fil: Namour, Jorge Habib. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina
dc.description.fil
Fil: Cesaroni, Claudio. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Istituto Nazionale di Geofisica e Vulcanologia; Italia
dc.description.fil
Fil: Spogli, Luca. Istituto Nazionale di Geofisica e Vulcanologia; Italia. SpacEarth Technology; Italia
dc.description.fil
Fil: Argüelles, Noelia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina
dc.description.fil
Fil: Asamoah, Eric N.. Istituto Nazionale di Geofisica e Vulcanologia; Italia. University of Salento; Italia
dc.journal.title
Journal of Atmospheric and Solar-Terrestrial Physics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1364682625000112
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jastp.2025.106427
Archivos asociados