Mostrar el registro sencillo del ítem

dc.contributor.author
Dickenstein, Alicia Marcela  
dc.contributor.author
Di Rocco, Sandra  
dc.contributor.author
Piene, Ragni  
dc.date.available
2025-09-08T08:48:06Z  
dc.date.issued
2024-10  
dc.identifier.citation
Dickenstein, Alicia Marcela; Di Rocco, Sandra; Piene, Ragni; Interpolation of toric varieties; University at Albany; New York Journal of Mathematics; 30; 10-2024; 1498-1516  
dc.identifier.issn
1076-9803  
dc.identifier.uri
http://hdl.handle.net/11336/270442  
dc.description.abstract
Let ⊂ ℙ be an -dimensional variety in -dimensional complex projective space. Let be a positive integer such that the combinatorial number (+, k) is smaller than or equal to . Consider the following interpolation problem: does there exist a variety ⊂ ℙ of dimension strictly smaller than (m+k,k) with ⊂ , such that the tangent space to at a point ∈ isequal to the th osculating space to at , for almost all points ∈ ? In this paper we consider this question in the toric setting. We prove that if is toric, then there is a unique toric variety solving the above interpolation problem. We identify in the general case and we explicitly compute some of its invariants when is a toric curve.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
University at Albany  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
TORIC VARIETY  
dc.subject
INTERPOLATION  
dc.subject
OSCULATING SPACES, LATTICE POLYTOPES  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Interpolation of toric varieties  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-09-04T12:05:41Z  
dc.journal.volume
30  
dc.journal.pagination
1498-1516  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Dickenstein, Alicia Marcela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Di Rocco, Sandra. KTH Royal Institute of Technology; Suecia  
dc.description.fil
Fil: Piene, Ragni. University of Oslo; Noruega  
dc.journal.title
New York Journal of Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://nyjm.albany.edu/j/2024/30-62.html