Artículo
Interpolation of toric varieties
Fecha de publicación:
10/2024
Editorial:
University at Albany
Revista:
New York Journal of Mathematics
ISSN:
1076-9803
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let ⊂ ℙ be an -dimensional variety in -dimensional complex projective space. Let be a positive integer such that the combinatorial number (+, k) is smaller than or equal to . Consider the following interpolation problem: does there exist a variety ⊂ ℙ of dimension strictly smaller than (m+k,k) with ⊂ , such that the tangent space to at a point ∈ isequal to the th osculating space to at , for almost all points ∈ ? In this paper we consider this question in the toric setting. We prove that if is toric, then there is a unique toric variety solving the above interpolation problem. We identify in the general case and we explicitly compute some of its invariants when is a toric curve.
Palabras clave:
TORIC VARIETY
,
INTERPOLATION
,
OSCULATING SPACES, LATTICE POLYTOPES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Dickenstein, Alicia Marcela; Di Rocco, Sandra; Piene, Ragni; Interpolation of toric varieties; University at Albany; New York Journal of Mathematics; 30; 10-2024; 1498-1516
Compartir