Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Bioprocess statistical control: Identification stage based on hierarchical clustering

Cedeño Viteri, Marco VinicioIcon ; Rodriguez Aguilar, Leandro Pedro FaustinoIcon ; Sanchez, Mabel CristinaIcon
Fecha de publicación: 17/08/2016
Editorial: Elsevier
Revista: Process Biochemistry
ISSN: 1359-5113
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Química

Resumen

Bioprocesses are characterized by the fact that small variations in operating conditions may have a substantial impact on the final batch quality. Therefore, the early detection and isolation of faults allow implementing corrective actions before the effects of deviations from the normal operation have a detrimental effect on production. In this work a new strategy for the statistical monitoring of batch processes is presented, and it is applied to monitor the operation of a fermentation process. The methodology works in the original variable space, therefore it only uses the Hotelling statistic for detection purposes. To determine the set of measurements by which the fault is revealed, the nearest in control neighbor to the observation point is calculated, and the distance between these two points is used to evaluate the contribution of each observation to the inflated statistic. In contrast to the existing latent-variable and original-variable based approaches, a simple hierarchical clustering technique allows to identify the set of suspicious measurements, without assuming the probability density function of the variable contributions. Furthermore, the performance of the proposed identification procedure is compared to the one achieved using other monitoring techniques. A well-known fed-batch fermentation benchmark is employed with this purpose, and the comparison is based on the results of a comprehensive set of simulated fault scenarios.
Palabras clave: Statistical Control , Bioprocess , Fault Diagnosis , Multivariate Process Control , Hotelling Statistic , Fault Identification , Clusters , Fermentation
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.274Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/26934
URL: http://www.sciencedirect.com/science/article/pii/S135951131630335X
DOI: http://dx.doi.org/10.1016/j.procbio.2016.08.020
Colecciones
Articulos(PLAPIQUI)
Articulos de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Citación
Cedeño Viteri, Marco Vinicio; Rodriguez Aguilar, Leandro Pedro Faustino; Sanchez, Mabel Cristina; Bioprocess statistical control: Identification stage based on hierarchical clustering; Elsevier; Process Biochemistry; 51; 12; 17-8-2016; 1919-1929
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES