Mostrar el registro sencillo del ítem

dc.contributor.author
Cedeño Viteri, Marco Vinicio  
dc.contributor.author
Rodriguez Aguilar, Leandro Pedro Faustino  
dc.contributor.author
Sanchez, Mabel Cristina  
dc.date.available
2017-10-23T19:24:16Z  
dc.date.issued
2016-08-17  
dc.identifier.citation
Cedeño Viteri, Marco Vinicio; Rodriguez Aguilar, Leandro Pedro Faustino; Sanchez, Mabel Cristina; Bioprocess statistical control: Identification stage based on hierarchical clustering; Elsevier; Process Biochemistry; 51; 12; 17-8-2016; 1919-1929  
dc.identifier.issn
1359-5113  
dc.identifier.uri
http://hdl.handle.net/11336/26934  
dc.description.abstract
Bioprocesses are characterized by the fact that small variations in operating conditions may have a substantial impact on the final batch quality. Therefore, the early detection and isolation of faults allow implementing corrective actions before the effects of deviations from the normal operation have a detrimental effect on production. In this work a new strategy for the statistical monitoring of batch processes is presented, and it is applied to monitor the operation of a fermentation process. The methodology works in the original variable space, therefore it only uses the Hotelling statistic for detection purposes. To determine the set of measurements by which the fault is revealed, the nearest in control neighbor to the observation point is calculated, and the distance between these two points is used to evaluate the contribution of each observation to the inflated statistic. In contrast to the existing latent-variable and original-variable based approaches, a simple hierarchical clustering technique allows to identify the set of suspicious measurements, without assuming the probability density function of the variable contributions. Furthermore, the performance of the proposed identification procedure is compared to the one achieved using other monitoring techniques. A well-known fed-batch fermentation benchmark is employed with this purpose, and the comparison is based on the results of a comprehensive set of simulated fault scenarios.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Statistical Control  
dc.subject
Bioprocess  
dc.subject
Fault Diagnosis  
dc.subject
Multivariate Process Control  
dc.subject
Hotelling Statistic  
dc.subject
Fault Identification  
dc.subject
Clusters  
dc.subject
Fermentation  
dc.subject.classification
Otras Ingeniería Química  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Bioprocess statistical control: Identification stage based on hierarchical clustering  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-10-09T15:35:30Z  
dc.journal.volume
51  
dc.journal.number
12  
dc.journal.pagination
1919-1929  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Ámsterdam  
dc.description.fil
Fil: Cedeño Viteri, Marco Vinicio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.description.fil
Fil: Rodriguez Aguilar, Leandro Pedro Faustino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.description.fil
Fil: Sanchez, Mabel Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.journal.title
Process Biochemistry  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S135951131630335X  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.procbio.2016.08.020