Artículo
Calc-alkaline rear-arc magmatism in the Fuegian Andes: Implications for the mid-cretaceous tectonomagmatic evolution of southernmost South America
Fecha de publicación:
02/2011
Editorial:
Pergamon-Elsevier Science Ltd
Revista:
Journal of South American Earth Sciences
ISSN:
0895-9811
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The magmatic arc of the Fuegian Andes is composed mostly of Upper Mesozoic to Cenozoic calc-alkaline plutons and subordinated lavas. To the rear arc, however, isolated mid-Cretaceous monzonitic plutons and small calc-alkaline dykes and sills crop out. This calc-alkaline unit (the Ushuaia Peninsula Andesites, UPA) includes hornblende-rich, porphyritic quartz meladiorites, granodiorites, andesites, dacites and lamprophyres. Radiometric dating and cross-cutting relationships indicate that UPA is younger than the monzonitic suite. The geochemistry of UPA is medium to high K, with high LILE (Ba 500–2000 ppm, Sr 800–1400 ppm), HFSE (Th 7–23 ppm, Nb 7–13 ppm, Ta 0.5–1.1 ppm) and LREE (La 16–51 ppm) contents, along with relatively low HREE (Yb 1.7–1.3 ppm) and Y (9–19 ppm). The similar mineralogy and geochemistry of all UPA rocks suggest they evolved from a common parental magma, by low pressure crystal fractionation, without significant crustal assimilation. A pure Rayleigh fractionation model indicates that 60–65% of crystal fractionation of 60% hornblende + 34% plagioclase + 4% clinopyroxene + 1% Fe-Ti oxide, apatite and sphene (a paragenesis similar of UPA mafic rocks) can explain evolution from lamprophyres to dacites. The UPA has higher LILE, HFSE and LREE, and lower HREE and Y than the calc-alkaline plutons and lavas of the volcanic front. The HREE and Y are lower than in the potassic plutons as well. High concentrations of Th, Nb, Ta, Zr, Hf, LREE and Ce/Pb, and low U/Th, Ba/Th ratios in UPA, even in the least differentiated samples, suggest contributions from subducted sediments to the mantle source. On the other hand, relatively low HREE and Y, high LREE/HREE (La/Yb 11–38) ratios and Nb-Ta contents can be interpreted as mantle metasomatism by partial melts of either subducted garnetiferous oceanic sediment or basalt as well. Additionally, high LILE content in UPA, similar to the potassic plutons, suggests also a mantle wedge previously metasomatized by potassic parental magmas in their route to crustal levels. Therefore, UPA represents a unique suite in the Fuegian arc generated in a multiple hybridized source. UPA generation is related to a transition from normal to flat subduction which additionally caused the widening and landward migration of the magmatic arc, as well as crustal deformation. Rear-arc magmatism endured ca. 22 m.y.; afterwards, calc-alkaline magmatism remained at the volcanic front.
Palabras clave:
REAR-ARC MAGMATISM
,
SLAB MELTS
,
SLAB FLATTENING
,
FUEGIAN ANDES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CADIC)
Articulos de CENTRO AUSTRAL DE INVESTIGACIONES CIENTIFICAS
Articulos de CENTRO AUSTRAL DE INVESTIGACIONES CIENTIFICAS
Articulos(IDEAN)
Articulos de INSTITUTO DE ESTUDIOS ANDINOS "DON PABLO GROEBER"
Articulos de INSTITUTO DE ESTUDIOS ANDINOS "DON PABLO GROEBER"
Citación
Gonzalez Guillot, Mauricio Alberto; Escayola, Monica Patricia; Acevedo, Rogelio Daniel; Calc-alkaline rear-arc magmatism in the Fuegian Andes: Implications for the mid-cretaceous tectonomagmatic evolution of southernmost South America; Pergamon-Elsevier Science Ltd; Journal of South American Earth Sciences; 31; 1; 2-2011; 1-16
Compartir
Altmétricas