Mostrar el registro sencillo del ítem

dc.contributor.author
Delbianco, Fernando Andrés  
dc.contributor.author
Tohmé, Fernando Abel  
dc.date.available
2025-08-07T15:21:34Z  
dc.date.issued
2025-07  
dc.identifier.citation
Delbianco, Fernando Andrés; Tohmé, Fernando Abel; Identifying Highly Relevant Entries in Datasets: A Relevance-Based Classification; Springer; Journal Of Classification; 7-2025; 1-21  
dc.identifier.issn
0176-4268  
dc.identifier.uri
http://hdl.handle.net/11336/268335  
dc.description.abstract
In this paper, we present a methodology to classify dataset entries in datasets, based on theirrelevance for answering different specific queries. It employs a repeated individualized inference approach to identify entries with significant Shapley values, contributing with accurate answers to queries about other entries in the dataset. This information is captured in three matrices: a general relevance matrix, a Shapley value matrix, and a significant Shapley value matrix. Since usually the information in datasets is non-homogeneously distributed, relevance is often concentrated in a few entries. This is in particular observed in a representative case study.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Conformal prediction  
dc.subject
Individualized inference  
dc.subject
Synthetic data  
dc.subject
Shapley values  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Identifying Highly Relevant Entries in Datasets: A Relevance-Based Classification  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-08-07T14:55:30Z  
dc.journal.pagination
1-21  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Delbianco, Fernando Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; Argentina  
dc.description.fil
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; Argentina  
dc.journal.title
Journal Of Classification  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s00357-025-09513-6  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00357-025-09513-6