Mostrar el registro sencillo del ítem
dc.contributor.author
Delbianco, Fernando Andrés
dc.contributor.author
Tohmé, Fernando Abel
dc.date.available
2025-08-07T15:21:34Z
dc.date.issued
2025-07
dc.identifier.citation
Delbianco, Fernando Andrés; Tohmé, Fernando Abel; Identifying Highly Relevant Entries in Datasets: A Relevance-Based Classification; Springer; Journal Of Classification; 7-2025; 1-21
dc.identifier.issn
0176-4268
dc.identifier.uri
http://hdl.handle.net/11336/268335
dc.description.abstract
In this paper, we present a methodology to classify dataset entries in datasets, based on theirrelevance for answering different specific queries. It employs a repeated individualized inference approach to identify entries with significant Shapley values, contributing with accurate answers to queries about other entries in the dataset. This information is captured in three matrices: a general relevance matrix, a Shapley value matrix, and a significant Shapley value matrix. Since usually the information in datasets is non-homogeneously distributed, relevance is often concentrated in a few entries. This is in particular observed in a representative case study.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Conformal prediction
dc.subject
Individualized inference
dc.subject
Synthetic data
dc.subject
Shapley values
dc.subject.classification
Estadística y Probabilidad
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Identifying Highly Relevant Entries in Datasets: A Relevance-Based Classification
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-08-07T14:55:30Z
dc.journal.pagination
1-21
dc.journal.pais
Alemania
dc.description.fil
Fil: Delbianco, Fernando Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; Argentina
dc.description.fil
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; Argentina
dc.journal.title
Journal Of Classification
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s00357-025-09513-6
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00357-025-09513-6
Archivos asociados