Artículo
Identifying Highly Relevant Entries in Datasets: A Relevance-Based Classification
Fecha de publicación:
07/2025
Editorial:
Springer
Revista:
Journal Of Classification
ISSN:
0176-4268
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, we present a methodology to classify dataset entries in datasets, based on theirrelevance for answering different specific queries. It employs a repeated individualized inference approach to identify entries with significant Shapley values, contributing with accurate answers to queries about other entries in the dataset. This information is captured in three matrices: a general relevance matrix, a Shapley value matrix, and a significant Shapley value matrix. Since usually the information in datasets is non-homogeneously distributed, relevance is often concentrated in a few entries. This is in particular observed in a representative case study.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Delbianco, Fernando Andrés; Tohmé, Fernando Abel; Identifying Highly Relevant Entries in Datasets: A Relevance-Based Classification; Springer; Journal Of Classification; 7-2025; 1-21
Compartir
Altmétricas