Mostrar el registro sencillo del ítem
dc.contributor.author
Borredon, Claudia
dc.contributor.author
Miccio, Luis Alejandro
dc.contributor.author
Schwartz, Gustavo A.
dc.date.available
2025-07-30T13:21:48Z
dc.date.issued
2024-04
dc.identifier.citation
Borredon, Claudia; Miccio, Luis Alejandro; Schwartz, Gustavo A.; Transfer learning-driven artificial intelligence model for glass transition temperature estimation of molecular glass formers mixtures; Elsevier; Computational Materials Science; 238; 112931; 4-2024; 1-7
dc.identifier.issn
0927-0256
dc.identifier.uri
http://hdl.handle.net/11336/267536
dc.description.abstract
Predicting binary mixtures´ glass transition temperature (Tg) is crucial in various fields, particularly for industrial materials affected by this property during production processes and in service-life. On the other hand, from the fundamental point of view, this predictive capability is relevant for understanding the chemical interactions between the two components and how this affects the Tg of the mixture. In this sense, some models provide different approaches for describing the Tg of the mixture. Among them, the Gordon-Taylor approach has been widely used since it only relies on the relationship between the Tg of the pure components, their weight fraction, and only one fitting parameter. Although simple, this approach still requires measurements of Tg of the pure components and at least some intermediated composition for the fitting procedure. In a previous work, our research has focused on neural networks methods for predicting Tg values directly from the chemical structure of monomers and molecules, but the scarcity of experimental data for binary mixtures limits the application of a similar approach. To address this problem, we propose to use in this work a transfer learning method that relays on the previous acquired knowledge of the chemical structure - Tg relationship, for the prediction of the Tg of the binary mixtures. Therefore, pure component characteristics are derived from chemical fingerprints originated in a pre-trained network, and enables a training process focused on their behavior within the mixtures. This approach successfully estimated K with very low deviations, even allowing for the exploration of the embedded chemical structure´s relation to previously unknown mixtures.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Gordon Taylor
dc.subject
Glass formers
dc.subject
Transfer Learning
dc.subject
Machine learning
dc.subject.classification
Ingeniería de los Materiales
dc.subject.classification
Ingeniería de los Materiales
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Transfer learning-driven artificial intelligence model for glass transition temperature estimation of molecular glass formers mixtures
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-07-29T12:00:21Z
dc.journal.volume
238
dc.journal.number
112931
dc.journal.pagination
1-7
dc.journal.pais
Países Bajos
dc.description.fil
Fil: Borredon, Claudia. Universidad del País Vasco; España. Consejo Superior de Investigaciones Científicas; España
dc.description.fil
Fil: Miccio, Luis Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
dc.description.fil
Fil: Schwartz, Gustavo A.. Consejo Superior de Investigaciones Científicas; España. Universidad del País Vasco; España
dc.journal.title
Computational Materials Science
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0927025624001526
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.commatsci.2024.112931
Archivos asociados