Mostrar el registro sencillo del ítem

dc.contributor.author
Borredon, Claudia  
dc.contributor.author
Miccio, Luis Alejandro  
dc.contributor.author
Schwartz, Gustavo A.  
dc.date.available
2025-07-30T13:21:48Z  
dc.date.issued
2024-04  
dc.identifier.citation
Borredon, Claudia; Miccio, Luis Alejandro; Schwartz, Gustavo A.; Transfer learning-driven artificial intelligence model for glass transition temperature estimation of molecular glass formers mixtures; Elsevier; Computational Materials Science; 238; 112931; 4-2024; 1-7  
dc.identifier.issn
0927-0256  
dc.identifier.uri
http://hdl.handle.net/11336/267536  
dc.description.abstract
Predicting binary mixtures´ glass transition temperature (Tg) is crucial in various fields, particularly for industrial materials affected by this property during production processes and in service-life. On the other hand, from the fundamental point of view, this predictive capability is relevant for understanding the chemical interactions between the two components and how this affects the Tg of the mixture. In this sense, some models provide different approaches for describing the Tg of the mixture. Among them, the Gordon-Taylor approach has been widely used since it only relies on the relationship between the Tg of the pure components, their weight fraction, and only one fitting parameter. Although simple, this approach still requires measurements of Tg of the pure components and at least some intermediated composition for the fitting procedure. In a previous work, our research has focused on neural networks methods for predicting Tg values directly from the chemical structure of monomers and molecules, but the scarcity of experimental data for binary mixtures limits the application of a similar approach. To address this problem, we propose to use in this work a transfer learning method that relays on the previous acquired knowledge of the chemical structure - Tg relationship, for the prediction of the Tg of the binary mixtures. Therefore, pure component characteristics are derived from chemical fingerprints originated in a pre-trained network, and enables a training process focused on their behavior within the mixtures. This approach successfully estimated K with very low deviations, even allowing for the exploration of the embedded chemical structure´s relation to previously unknown mixtures.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Gordon Taylor  
dc.subject
Glass formers  
dc.subject
Transfer Learning  
dc.subject
Machine learning  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Transfer learning-driven artificial intelligence model for glass transition temperature estimation of molecular glass formers mixtures  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-07-29T12:00:21Z  
dc.journal.volume
238  
dc.journal.number
112931  
dc.journal.pagination
1-7  
dc.journal.pais
Países Bajos  
dc.description.fil
Fil: Borredon, Claudia. Universidad del País Vasco; España. Consejo Superior de Investigaciones Científicas; España  
dc.description.fil
Fil: Miccio, Luis Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina  
dc.description.fil
Fil: Schwartz, Gustavo A.. Consejo Superior de Investigaciones Científicas; España. Universidad del País Vasco; España  
dc.journal.title
Computational Materials Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0927025624001526  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.commatsci.2024.112931