Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Transfer learning-driven artificial intelligence model for glass transition temperature estimation of molecular glass formers mixtures

Borredon, Claudia; Miccio, Luis AlejandroIcon ; Schwartz, Gustavo A.
Fecha de publicación: 04/2024
Editorial: Elsevier
Revista: Computational Materials Science
ISSN: 0927-0256
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de los Materiales

Resumen

Predicting binary mixtures´ glass transition temperature (Tg) is crucial in various fields, particularly for industrial materials affected by this property during production processes and in service-life. On the other hand, from the fundamental point of view, this predictive capability is relevant for understanding the chemical interactions between the two components and how this affects the Tg of the mixture. In this sense, some models provide different approaches for describing the Tg of the mixture. Among them, the Gordon-Taylor approach has been widely used since it only relies on the relationship between the Tg of the pure components, their weight fraction, and only one fitting parameter. Although simple, this approach still requires measurements of Tg of the pure components and at least some intermediated composition for the fitting procedure. In a previous work, our research has focused on neural networks methods for predicting Tg values directly from the chemical structure of monomers and molecules, but the scarcity of experimental data for binary mixtures limits the application of a similar approach. To address this problem, we propose to use in this work a transfer learning method that relays on the previous acquired knowledge of the chemical structure - Tg relationship, for the prediction of the Tg of the binary mixtures. Therefore, pure component characteristics are derived from chemical fingerprints originated in a pre-trained network, and enables a training process focused on their behavior within the mixtures. This approach successfully estimated K with very low deviations, even allowing for the exploration of the embedded chemical structure´s relation to previously unknown mixtures.
Palabras clave: Gordon Taylor , Glass formers , Transfer Learning , Machine learning
Ver el registro completo
 
Archivos asociados
Tamaño: 2.215Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/267536
URL: https://linkinghub.elsevier.com/retrieve/pii/S0927025624001526
DOI: http://dx.doi.org/10.1016/j.commatsci.2024.112931
Colecciones
Articulos(INTEMA)
Articulos de INST.DE INV.EN CIENCIA Y TECNOL.MATERIALES (I)
Citación
Borredon, Claudia; Miccio, Luis Alejandro; Schwartz, Gustavo A.; Transfer learning-driven artificial intelligence model for glass transition temperature estimation of molecular glass formers mixtures; Elsevier; Computational Materials Science; 238; 112931; 4-2024; 1-7
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES