Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Garbage in, garbage out: how reliable training data improved a virtual screening approach against SARS-CoV-2 MPro

Ruatta Merke, Santiago Matías; Prada Gori, Denis NihuelIcon ; Fló Díaz, Martín; Lorenzelli, Franca; Perelmuter, Karen; Alberca, Lucas NicolásIcon ; Bellera, Carolina LeticiaIcon ; Medeiros, Andrea; López, Gloria V.; Ingold, Mariana; Porcal, Williams; Dibello, Estefanía; Ihnatenko, Irina; Kunick, Conrad; Incerti, Marcelo; Luzardo, Martín; Colobbio, Maximiliano; Ramos, Juan Carlos; Manta, Eduardo; Carlucci, RenzoIcon ; Labadie, Guillermo RobertoIcon ; Delpiccolo, Carina Maria LujanIcon ; Gantner, Melisa EdithIcon ; Rodríguez, SantiagoIcon ; Gavernet, LucianaIcon ; Bollati Fogolín, Mariela; Pritsch, Otto; Shum, David; Talevi, AlanIcon ; Comini, Marcelo
Fecha de publicación: 06/2023
Editorial: Frontiers Media
Revista: Frontiers in Pharmacology
e-ISSN: 1663-9812
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Enfermedades Infecciosas

Resumen

Introduction: The identification of chemical compounds that interfere with SARS-CoV-2 replication continues to be a priority in several academic and pharmaceutical laboratories. Computational tools and approaches have the power to integrate, process and analyze multiple data in a short time. However, these initiatives may yield unrealistic results if the applied models are not inferred from reliable data and the resulting predictions are not confirmed by experimental evidence. Methods: We undertook a drug discovery campaign against the essential major protease (MPro) from SARS-CoV-2, which relied on an in silico search strategy –performed in a large and diverse chemolibrary– complemented by experimental validation. The computational method comprises a recently reported ligand-based approach developed upon refinement/learning cycles, and structure-based approximations. Search models were applied to both retrospective (in silico) and prospective (experimentally confirmed) screening. Results: The first generation of ligand-based models were fed by data, which to a great extent, had not been published in peer-reviewed articles. The first screening campaign performed with 188 compounds (46 in silico hits and 100 analogues, and 40 unrelated compounds: flavonols and pyrazoles) yielded three hits against MPro (IC50 ≤ 25 μM): two analogues of in silico hits (one glycoside and one benzo-thiazol) and one flavonol. A second generation of ligand-based models was developed based on this negative information and newly published peer-reviewed data for MPro inhibitors. This led to 43 new hit candidates belonging to different chemical families. From 45 compounds (28 in silico hits and 17 related analogues) tested in the second screening campaign, eight inhibited MPro with IC50 = 0.12–20 μM and five of them also impaired the proliferation of SARS-CoV-2 in Vero cells (EC50 7–45 μM). Discussion: Our study provides an example of a virtuous loop between computational and experimental approaches applied to target-focused drug discovery against a major and global pathogen, reaffirming the well-known “garbage in, garbage out” machine learning principle.
Palabras clave: ARTIFICIAL INTELLIGENCE , CORONAVIRUS , COVID-19 , DRUG DISCOVERY , IN SILICO SCREENING , PROTEASE , RUBBISH IN RUBBISH OUT , TARGET-BASED
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.783Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/267443
DOI: https://doi.org/10.3389/fphar.2023.1193282
URL: https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2023.11
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos(INIBIOLP)
Articulos de INST.DE INVEST.BIOQUIMICAS DE LA PLATA
Articulos(IQUIR)
Articulos de INST.DE QUIMICA ROSARIO
Citación
Ruatta Merke, Santiago Matías; Prada Gori, Denis Nihuel; Fló Díaz, Martín; Lorenzelli, Franca; Perelmuter, Karen; et al.; Garbage in, garbage out: how reliable training data improved a virtual screening approach against SARS-CoV-2 MPro; Frontiers Media; Frontiers in Pharmacology; 14; 6-2023; 1-23
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES