Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Heterogeneous density-based clustering with a dual-functional memristive array

Shin, Dong Hoon; Cheong, Sunwoo; Lee, Soo Hyung; Jang, Yoon Ho; Park, Taegyun; Han, Janguk; Shim, Sung Keun; Kim, Yeong Rok; Han, Joon Kyu; Baek, In Kyung; Ghenzi, NéstorIcon ; Hwang, Cheol Seong
Fecha de publicación: 07/2024
Editorial: Royal Society of Chemistry
Revista: Materials Horizons
ISSN: 2051-6347
e-ISSN: 2051-6355
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física de los Materiales Condensados

Resumen

In the big data era, the requirement for data clustering methods that can handle massive and heterogeneous datasets with varying distributions increases. This study proposes a clustering algorithm for data sets with heterogeneous density using a dual-mode memristor crossbar array for data clustering. The array consists of a Ta/HfO2/RuO2 memristor operating in analog or digital modes, controlled by the reset voltage. The digital mode shows low dispersion and a high resistance ratio, and the analog mode enables precise conductance tuning. The local outlier factor is introduced to handle a heterogeneous density, and the required Euclidean and K-distances within the given dataset are calculated in the analog mode in parallel. In the digital mode, clustering is performed based on the connectivity among data points after excluding the detected outliers. The proposed algorithm boasts linear time complexity for the entire process. Extensive evaluations of synthetic datasets demonstrate significant improvement over representative density-based algorithms, and the datasets with heterogeneous density are clustered feasibly. Finally, the proposed algorithm is used to cluster the single-molecule localization microscopy data, demonstrating the feasibility of the suggested method for real-world problems.
Palabras clave: clustering , ruthenium , memristor , machine learning
Ver el registro completo
 
Archivos asociados
Tamaño: 3.341Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/267431
URL: https://xlink.rsc.org/?DOI=D4MH00300D
DOI: http://dx.doi.org/10.1039/D4MH00300D
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Shin, Dong Hoon; Cheong, Sunwoo; Lee, Soo Hyung; Jang, Yoon Ho; Park, Taegyun; et al.; Heterogeneous density-based clustering with a dual-functional memristive array; Royal Society of Chemistry; Materials Horizons; 11; 18; 7-2024; 4493-4506
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES