Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Hyperplane tree-based data mining with a multi-functional memristive crossbar array

Cheong, Sunwoo; Shin, Dong Hoon; Lee, Soo Hyung; Jang, Yoon Ho; Han, Janguk; Shim, Sung Keun; Han, Joon Kyu; Ghenzi, NéstorIcon ; Hwang, Cheol Seong
Fecha de publicación: 10/2024
Editorial: Royal Society of Chemistry
Revista: Materials Horizons
ISSN: 2051-6347
e-ISSN: 2051-6355
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física de los Materiales Condensados

Resumen

This study explores the stochastic and binary switching behaviors of a Ta/HfO2/RuO2 memristor to implement a combined data mining approach for outlier detection and data clustering algorithms in a multi-functional memristive crossbar array. The memristor switches stochastically with high state dispersion in the stochastic mode and deterministically between two states with low dispersion in the binary mode, while they can be controlled by varying operating voltages. The stochastic mode facilitates the parallel generation of random hyperplanes in a tree structure, used to compress spatial information of the dataset in the Euclidian space into binary format, still retaining sufficient spatial features. The ensemble effect from multiple trees improved the classification performance. The binary mode facilitates parallel Hamming distance calculation of the binary codes containing spatial information, which measures similarity. These two modes enable efficient implementation of the newly proposed minority-based outlier detection method and modified K-means method on the same hardware. Array measurements and hardware simulations investigate various hyperparameters’ impact and validate the proposed methods with practical datasets. The proposed methods show linear O(n) time complexity and high energy efficiency, consuming o1% of the energy compared to digital computing with conventional algorithms while demonstrating software-comparable performance in both tasks.
Palabras clave: memristor , synapse , neuron , analog
Ver el registro completo
 
Archivos asociados
Tamaño: 4.879Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/267429
URL: https://xlink.rsc.org/?DOI=D4MH00942H
DOI: http://dx.doi.org/10.1039/D4MH00942H
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Cheong, Sunwoo; Shin, Dong Hoon; Lee, Soo Hyung; Jang, Yoon Ho; Han, Janguk; et al.; Hyperplane tree-based data mining with a multi-functional memristive crossbar array; Royal Society of Chemistry; Materials Horizons; 11; 23; 10-2024; 5946-5959
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES