Mostrar el registro sencillo del ítem

dc.contributor.author
Gili, Adriana Anahi  
dc.contributor.author
Noellemeyer, Elke Johanna  
dc.contributor.author
Balzarini, Monica Graciela  
dc.date.available
2017-10-17T18:01:15Z  
dc.date.issued
2012-08  
dc.identifier.citation
Gili, Adriana Anahi; Noellemeyer, Elke Johanna; Balzarini, Monica Graciela; Hierarchical linear mixed models in multi-stage sampling soil studies; Springer; Environmental And Ecological Statistics; 20; 2; 8-2012; 237-252  
dc.identifier.issn
1352-8505  
dc.identifier.uri
http://hdl.handle.net/11336/26723  
dc.description.abstract
The issue of variances of different soil variables prevailing at different sampling scales is addressed. This topic is relevant for soil science, agronomy and landscape ecology. In multi-stage sampling there are randomness components in each stage of sampling which can be taken into account by introducing random effects in analysis through the use of hierarchical linear mixed models (HLMM). Due to the nested sampling scheme, there are several hierarchical sub-models. The selection of the best model can be carried out through likelihood ratio tests (LRTs) or Wald tests, which are asymptotically equivalent under standard conditions. However, when the comparison leads to a restricted hypothesis of variance components, standard conditions are not maintained, which leads to more elaborated versions of LRTs. These versions are not disseminated among environmental scientists. The present study shows the modeling of soil data from a sampling where sites, fields within sites, transects within fields, and sampling points within transects were selected in order to take samples from different vegetation types (open and shade). For soil data, several sub-models were compared using Wald tests, classic LRTs and adjusted LRTs where the distribution of the test statistic under the null hypothesis is the Chi-square mixture of Chi-square distributions. The inclusion of random effects via HLMM and suggested by the latest version of LRT allowed us to detect effects of vegetation type on soil properties that were not detected under a classical ANOVA.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Bulk Density  
dc.subject
Likelihood Ratio Test (Lrt)  
dc.subject
Texture  
dc.subject
Total Organic Carbon  
dc.subject.classification
Otras Matemáticas  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Hierarchical linear mixed models in multi-stage sampling soil studies  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2015-09-30T19:45:28Z  
dc.identifier.eissn
1573-3009  
dc.journal.volume
20  
dc.journal.number
2  
dc.journal.pagination
237-252  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Gili, Adriana Anahi. Universidad Nacional de La Pampa. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Noellemeyer, Elke Johanna. Universidad Nacional de La Pampa. Facultad de Agronomía; Argentina  
dc.description.fil
Fil: Balzarini, Monica Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Environmental And Ecological Statistics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10651-012-0217-0  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10651-012-0217-0