Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Hierarchical linear mixed models in multi-stage sampling soil studies

Gili, Adriana AnahiIcon ; Noellemeyer, Elke Johanna; Balzarini, Monica GracielaIcon
Fecha de publicación: 08/2012
Editorial: Springer
Revista: Environmental And Ecological Statistics
ISSN: 1352-8505
e-ISSN: 1573-3009
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Matemáticas

Resumen

The issue of variances of different soil variables prevailing at different sampling scales is addressed. This topic is relevant for soil science, agronomy and landscape ecology. In multi-stage sampling there are randomness components in each stage of sampling which can be taken into account by introducing random effects in analysis through the use of hierarchical linear mixed models (HLMM). Due to the nested sampling scheme, there are several hierarchical sub-models. The selection of the best model can be carried out through likelihood ratio tests (LRTs) or Wald tests, which are asymptotically equivalent under standard conditions. However, when the comparison leads to a restricted hypothesis of variance components, standard conditions are not maintained, which leads to more elaborated versions of LRTs. These versions are not disseminated among environmental scientists. The present study shows the modeling of soil data from a sampling where sites, fields within sites, transects within fields, and sampling points within transects were selected in order to take samples from different vegetation types (open and shade). For soil data, several sub-models were compared using Wald tests, classic LRTs and adjusted LRTs where the distribution of the test statistic under the null hypothesis is the Chi-square mixture of Chi-square distributions. The inclusion of random effects via HLMM and suggested by the latest version of LRT allowed us to detect effects of vegetation type on soil properties that were not detected under a classical ANOVA.
Palabras clave: Bulk Density , Likelihood Ratio Test (Lrt) , Texture , Total Organic Carbon
Ver el registro completo
 
Archivos asociados
Tamaño: 1.009Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/26723
DOI: http://dx.doi.org/10.1007/s10651-012-0217-0
URL: https://link.springer.com/article/10.1007%2Fs10651-012-0217-0
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
Gili, Adriana Anahi; Noellemeyer, Elke Johanna; Balzarini, Monica Graciela; Hierarchical linear mixed models in multi-stage sampling soil studies; Springer; Environmental And Ecological Statistics; 20; 2; 8-2012; 237-252
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES