Mostrar el registro sencillo del ítem

dc.contributor.author
Ghenzi, Néstor  
dc.contributor.author
Park, Tae Won  
dc.contributor.author
Kim, Seung Soo  
dc.contributor.author
Kim, Hae Jin  
dc.contributor.author
Jang, Yoon Ho  
dc.contributor.author
Woo, Kyung Seok  
dc.contributor.author
Hwang, Cheol Seong  
dc.date.available
2025-07-28T13:12:51Z  
dc.date.issued
2023-12  
dc.identifier.citation
Ghenzi, Néstor; Park, Tae Won; Kim, Seung Soo; Kim, Hae Jin; Jang, Yoon Ho; et al.; Heterogeneous reservoir computing in second-order Ta 2 O 5 /HfO 2 memristors; Royal Society of Chemistry; Nanoscale Horizons; 9; 3; 12-2023; 427-437  
dc.identifier.issn
2055-6756  
dc.identifier.uri
http://hdl.handle.net/11336/267237  
dc.description.abstract
Multiple switching modes in a Ta2O5/HfO2 memristor are studied experimentally and numerically through a reservoir computing (RC) simulation to reveal the importance of nonlinearity and heterogeneity in the RC framework. Unlike most studies, where homogeneous reservoirs are used, heterogeneity is introduced by combining different behaviors of the memristor units. The chosen memristor for the reservoir units is based on a Ta2O5/HfO2 bilayer, in which the conductances of the Ta2O5 and HfO2 layers are controlled by the oxygen vacancies and deep/shallow traps, respectively, providing both volatile and non-volatile resistive switching modes. These several control parameters make the second-order Ta2O5/HfO2 memristor system present different behaviors in agreement with its history-dependent conductance and allow the fine-tuning of the behavior of each reservoir unit. The heterogeneity in the reservoir units improves the pattern recognition performance in the heterogeneous memristor RC system with a similar physical structure.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Royal Society of Chemistry  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
memristor  
dc.subject
reservoir computing  
dc.subject
machine learning  
dc.subject
material  
dc.subject.classification
Física de los Materiales Condensados  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Heterogeneous reservoir computing in second-order Ta 2 O 5 /HfO 2 memristors  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-07-28T11:30:24Z  
dc.identifier.eissn
2055-6764  
dc.journal.volume
9  
dc.journal.number
3  
dc.journal.pagination
427-437  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Ghenzi, Néstor. Universidad Nacional de Avellaneda; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Park, Tae Won. Seoul National University; Corea del Sur  
dc.description.fil
Fil: Kim, Seung Soo. Seoul National University; Corea del Sur  
dc.description.fil
Fil: Kim, Hae Jin. Seoul National University; Corea del Sur  
dc.description.fil
Fil: Jang, Yoon Ho. Seoul National University; Corea del Sur  
dc.description.fil
Fil: Woo, Kyung Seok. Seoul National University; Corea del Sur  
dc.description.fil
Fil: Hwang, Cheol Seong. Seoul National University; Corea del Sur  
dc.journal.title
Nanoscale Horizons  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://xlink.rsc.org/?DOI=D3NH00493G  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1039/D3NH00493G