Mostrar el registro sencillo del ítem
dc.contributor.author
Senra, Daniela

dc.contributor.author
Guisoni, Nara Cristina

dc.contributor.author
Diambra, Luis Anibal

dc.date.available
2025-07-24T13:36:57Z
dc.date.issued
2025-04
dc.identifier.citation
Senra, Daniela; Guisoni, Nara Cristina; Diambra, Luis Anibal; Unraveling Tumor Heterogeneity: Quantitative Insights from Single-cell RNA Sequencing Analysis in Breast Cancer Subtypes; Cognizant Communication Corp; Gene Expression; 4-2025; 1-12
dc.identifier.issn
1052-2166
dc.identifier.uri
http://hdl.handle.net/11336/267060
dc.description.abstract
Background and objectives: Tumors are complex systems characterized by variations across genetic, transcriptomic, phenotypic, and microenvironmental levels. This study introduced a novel framework for quantifying cancer cell heterogeneity using single-cell RNA sequencing data. The framework comprised several scores aimed at uncovering the complexities of key cancer traits, such as metastasis, tumor progression, and recurrence. Methods: This study leveraged publicly available single-cell transcriptomic data from three human breast cancer subtypes: estrogen receptor-positive, human epidermal growth factor receptor 2-positive, and triple-negative. We employed a quantitative approach, analyzing copy number alterations (CNAs), entropy, transcriptomic heterogeneity, and diverse protein-protein interaction networks (PPINs) to explore critical concepts in cancer biology. Results: We found that entropy and PPIN activity related to the cell cycle could distinguish cell clusters with elevated mitotic activity, particularly in aggressive breast cancer subtypes. Additionally, CNA distributions varied across cancer subtypes. We also identified positive correlations between the CNA score, entropy, and the activities of PPINs associated with the cell cycle, as well as those linked to basal and mesenchymal cell lines. Conclusions: This study addresses a gap in the current understanding of breast cancer heterogeneity by presenting a novel quantitative approach that offers deeper insights into tumor biology, surpassing traditional marker-based methods.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Cognizant Communication Corp

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.subject
Breast cancer
dc.subject
Tumor heterogeneity
dc.subject
scRNA-seq
dc.subject
Copy number alteration
dc.subject.classification
Ciencias de la Información y Bioinformática

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Unraveling Tumor Heterogeneity: Quantitative Insights from Single-cell RNA Sequencing Analysis in Breast Cancer Subtypes
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-07-21T10:40:14Z
dc.journal.pagination
1-12
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: Senra, Daniela. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
dc.description.fil
Fil: Guisoni, Nara Cristina. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Argentina de la Empresa; Argentina
dc.description.fil
Fil: Diambra, Luis Anibal. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
dc.journal.title
Gene Expression

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.xiahepublishing.com/1555-3884/GE-2024-00071
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.14218/GE.2024.00071
Archivos asociados