Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Unraveling Tumor Heterogeneity: Quantitative Insights from Single-cell RNA Sequencing Analysis in Breast Cancer Subtypes

Senra, DanielaIcon ; Guisoni, Nara CristinaIcon ; Diambra, Luis AnibalIcon
Fecha de publicación: 04/2025
Editorial: Cognizant Communication Corp
Revista: Gene Expression
ISSN: 1052-2166
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

Background and objectives: Tumors are complex systems characterized by variations across genetic, transcriptomic, phenotypic, and microenvironmental levels. This study introduced a novel framework for quantifying cancer cell heterogeneity using single-cell RNA sequencing data. The framework comprised several scores aimed at uncovering the complexities of key cancer traits, such as metastasis, tumor progression, and recurrence. Methods: This study leveraged publicly available single-cell transcriptomic data from three human breast cancer subtypes: estrogen receptor-positive, human epidermal growth factor receptor 2-positive, and triple-negative. We employed a quantitative approach, analyzing copy number alterations (CNAs), entropy, transcriptomic heterogeneity, and diverse protein-protein interaction networks (PPINs) to explore critical concepts in cancer biology. Results: We found that entropy and PPIN activity related to the cell cycle could distinguish cell clusters with elevated mitotic activity, particularly in aggressive breast cancer subtypes. Additionally, CNA distributions varied across cancer subtypes. We also identified positive correlations between the CNA score, entropy, and the activities of PPINs associated with the cell cycle, as well as those linked to basal and mesenchymal cell lines. Conclusions: This study addresses a gap in the current understanding of breast cancer heterogeneity by presenting a novel quantitative approach that offers deeper insights into tumor biology, surpassing traditional marker-based methods.
Palabras clave: Breast cancer , Tumor heterogeneity , scRNA-seq , Copy number alteration
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 6.895Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial 2.5 Unported (CC BY-NC 2.5)
Identificadores
URI: http://hdl.handle.net/11336/267060
URL: https://www.xiahepublishing.com/1555-3884/GE-2024-00071
DOI: http://dx.doi.org/10.14218/GE.2024.00071
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Senra, Daniela; Guisoni, Nara Cristina; Diambra, Luis Anibal; Unraveling Tumor Heterogeneity: Quantitative Insights from Single-cell RNA Sequencing Analysis in Breast Cancer Subtypes; Cognizant Communication Corp; Gene Expression; 4-2025; 1-12
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES