Mostrar el registro sencillo del ítem

dc.contributor.author
Wallner, Markus  
dc.contributor.author
Müller, Omar Vicente  
dc.contributor.author
Gomez, Andrea Alejandra  
dc.contributor.author
Joost, Ingeborg  
dc.contributor.author
Düker, Urda  
dc.contributor.author
Klawonn, Frank  
dc.contributor.author
Nogueira, Regina  
dc.date.available
2025-07-24T12:30:09Z  
dc.date.issued
2025-01  
dc.identifier.citation
Wallner, Markus; Müller, Omar Vicente; Gomez, Andrea Alejandra; Joost, Ingeborg; Düker, Urda; et al.; A multivariate analysis to explain residue errors in pathogen concentration in wastewater-based epidemiology; Elsevier; Science of the Total Environment; 959; 1-2025; 1-15  
dc.identifier.issn
0048-9697  
dc.identifier.uri
http://hdl.handle.net/11336/267048  
dc.description.abstract
With the beginning of the COVID-19 pandemic, wastewater-based epidemiology (WBE), which according to Larsen et al. (2021), describes the science of linking pathogens and chemicals found in wastewater to population-level health, received an enormous boost worldwide. The basic procedure in WBE is to analyse pathogen concentrations and to relate these measurements to cases from clinical data. This prediction of cases is subject to large errors, due to various factors such as dilution effects, decay or wastewater matrix and inhibitors. In this study we used different models to identify the most important, what we call, wastewater-based epidemiologically relevant parameters (WBERP) to describe these errors. We used linear regression and random forest regression as base models for predicting cases and random forest regression also to analyse the importance of different WBERP.Two catchments, one with a large proportion of combined sewers and one with separate sewers, served as study areas. Our results show that the most important information to be included in any model are the variants of concern (VOCs), a time-variable parameter. The performance for both catchments is improved by ~30 % in terms of root mean square error when the VOCs are used as additional information. For practical applications, this is a real drawback as it means that every time a new pathogen variant becomes dominant, we need to know the specific behaviour of the variant in the wastewater and its detection in order to interpret the WBE data correctly. This limits the predictive capabilities of such systems, perhaps not in terms of dynamics but for quantitative statements. The addition of other physicochemical parameters and faecal markers only marginally improved the results. Furthermore, there were differences in the importance of the parameters between the catchments, which limits the generalisability of the conclusions. The results show that more complex wastewater matrices (high proportion of combined sewer system) influence the relationship between pathogen concentration and medical cases more than those of less complex wastewater matrices (separate sewer system).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
COVID-19  
dc.subject
WASTEWATER  
dc.subject
EPIDEMIOLOGY  
dc.subject
PREDICTION  
dc.subject.classification
Epidemiología  
dc.subject.classification
Ciencias de la Salud  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
A multivariate analysis to explain residue errors in pathogen concentration in wastewater-based epidemiology  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-07-21T10:45:42Z  
dc.journal.volume
959  
dc.journal.pagination
1-15  
dc.journal.pais
Países Bajos  
dc.description.fil
Fil: Wallner, Markus. Ostfalia University Of Applied Sciences; Alemania  
dc.description.fil
Fil: Müller, Omar Vicente. Universidad Nacional del Litoral. Facultad de Ingenieria y Ciencias Hidricas. Centro de Estudios de Variabilidad y Cambio Climatico.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina  
dc.description.fil
Fil: Gomez, Andrea Alejandra. Universidad Nacional del Litoral. Facultad de Ingenieria y Ciencias Hidricas. Centro de Estudios de Variabilidad y Cambio Climatico.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina  
dc.description.fil
Fil: Joost, Ingeborg. Ostfalia University of Applied Science; Alemania  
dc.description.fil
Fil: Düker, Urda. Leibniz Universitat Hannover.; Alemania  
dc.description.fil
Fil: Klawonn, Frank. Ostfalia University Of Applied Sciences; Alemania  
dc.description.fil
Fil: Nogueira, Regina. Leibniz Universitat Hannover.; Alemania  
dc.journal.title
Science of the Total Environment  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0048969724083074  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.scitotenv.2024.178149