Mostrar el registro sencillo del ítem
dc.contributor.author
Wallner, Markus
dc.contributor.author
Müller, Omar Vicente
dc.contributor.author
Gomez, Andrea Alejandra
dc.contributor.author
Joost, Ingeborg
dc.contributor.author
Düker, Urda
dc.contributor.author
Klawonn, Frank
dc.contributor.author
Nogueira, Regina
dc.date.available
2025-07-24T12:30:09Z
dc.date.issued
2025-01
dc.identifier.citation
Wallner, Markus; Müller, Omar Vicente; Gomez, Andrea Alejandra; Joost, Ingeborg; Düker, Urda; et al.; A multivariate analysis to explain residue errors in pathogen concentration in wastewater-based epidemiology; Elsevier; Science of the Total Environment; 959; 1-2025; 1-15
dc.identifier.issn
0048-9697
dc.identifier.uri
http://hdl.handle.net/11336/267048
dc.description.abstract
With the beginning of the COVID-19 pandemic, wastewater-based epidemiology (WBE), which according to Larsen et al. (2021), describes the science of linking pathogens and chemicals found in wastewater to population-level health, received an enormous boost worldwide. The basic procedure in WBE is to analyse pathogen concentrations and to relate these measurements to cases from clinical data. This prediction of cases is subject to large errors, due to various factors such as dilution effects, decay or wastewater matrix and inhibitors. In this study we used different models to identify the most important, what we call, wastewater-based epidemiologically relevant parameters (WBERP) to describe these errors. We used linear regression and random forest regression as base models for predicting cases and random forest regression also to analyse the importance of different WBERP.Two catchments, one with a large proportion of combined sewers and one with separate sewers, served as study areas. Our results show that the most important information to be included in any model are the variants of concern (VOCs), a time-variable parameter. The performance for both catchments is improved by ~30 % in terms of root mean square error when the VOCs are used as additional information. For practical applications, this is a real drawback as it means that every time a new pathogen variant becomes dominant, we need to know the specific behaviour of the variant in the wastewater and its detection in order to interpret the WBE data correctly. This limits the predictive capabilities of such systems, perhaps not in terms of dynamics but for quantitative statements. The addition of other physicochemical parameters and faecal markers only marginally improved the results. Furthermore, there were differences in the importance of the parameters between the catchments, which limits the generalisability of the conclusions. The results show that more complex wastewater matrices (high proportion of combined sewer system) influence the relationship between pathogen concentration and medical cases more than those of less complex wastewater matrices (separate sewer system).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
COVID-19
dc.subject
WASTEWATER
dc.subject
EPIDEMIOLOGY
dc.subject
PREDICTION
dc.subject.classification
Epidemiología
dc.subject.classification
Ciencias de la Salud
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD
dc.title
A multivariate analysis to explain residue errors in pathogen concentration in wastewater-based epidemiology
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-07-21T10:45:42Z
dc.journal.volume
959
dc.journal.pagination
1-15
dc.journal.pais
Países Bajos
dc.description.fil
Fil: Wallner, Markus. Ostfalia University Of Applied Sciences; Alemania
dc.description.fil
Fil: Müller, Omar Vicente. Universidad Nacional del Litoral. Facultad de Ingenieria y Ciencias Hidricas. Centro de Estudios de Variabilidad y Cambio Climatico.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
dc.description.fil
Fil: Gomez, Andrea Alejandra. Universidad Nacional del Litoral. Facultad de Ingenieria y Ciencias Hidricas. Centro de Estudios de Variabilidad y Cambio Climatico.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
dc.description.fil
Fil: Joost, Ingeborg. Ostfalia University of Applied Science; Alemania
dc.description.fil
Fil: Düker, Urda. Leibniz Universitat Hannover.; Alemania
dc.description.fil
Fil: Klawonn, Frank. Ostfalia University Of Applied Sciences; Alemania
dc.description.fil
Fil: Nogueira, Regina. Leibniz Universitat Hannover.; Alemania
dc.journal.title
Science of the Total Environment
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0048969724083074
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.scitotenv.2024.178149
Archivos asociados