Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A multivariate analysis to explain residue errors in pathogen concentration in wastewater-based epidemiology

Wallner, Markus; Müller, Omar VicenteIcon ; Gomez, Andrea AlejandraIcon ; Joost, Ingeborg; Düker, Urda; Klawonn, Frank; Nogueira, Regina
Fecha de publicación: 01/2025
Editorial: Elsevier
Revista: Science of the Total Environment
ISSN: 0048-9697
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Epidemiología

Resumen

With the beginning of the COVID-19 pandemic, wastewater-based epidemiology (WBE), which according to Larsen et al. (2021), describes the science of linking pathogens and chemicals found in wastewater to population-level health, received an enormous boost worldwide. The basic procedure in WBE is to analyse pathogen concentrations and to relate these measurements to cases from clinical data. This prediction of cases is subject to large errors, due to various factors such as dilution effects, decay or wastewater matrix and inhibitors. In this study we used different models to identify the most important, what we call, wastewater-based epidemiologically relevant parameters (WBERP) to describe these errors. We used linear regression and random forest regression as base models for predicting cases and random forest regression also to analyse the importance of different WBERP.Two catchments, one with a large proportion of combined sewers and one with separate sewers, served as study areas. Our results show that the most important information to be included in any model are the variants of concern (VOCs), a time-variable parameter. The performance for both catchments is improved by ~30 % in terms of root mean square error when the VOCs are used as additional information. For practical applications, this is a real drawback as it means that every time a new pathogen variant becomes dominant, we need to know the specific behaviour of the variant in the wastewater and its detection in order to interpret the WBE data correctly. This limits the predictive capabilities of such systems, perhaps not in terms of dynamics but for quantitative statements. The addition of other physicochemical parameters and faecal markers only marginally improved the results. Furthermore, there were differences in the importance of the parameters between the catchments, which limits the generalisability of the conclusions. The results show that more complex wastewater matrices (high proportion of combined sewer system) influence the relationship between pathogen concentration and medical cases more than those of less complex wastewater matrices (separate sewer system).
Palabras clave: COVID-19 , WASTEWATER , EPIDEMIOLOGY , PREDICTION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 14.68Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/267048
URL: https://linkinghub.elsevier.com/retrieve/pii/S0048969724083074
DOI: http://dx.doi.org/10.1016/j.scitotenv.2024.178149
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Wallner, Markus; Müller, Omar Vicente; Gomez, Andrea Alejandra; Joost, Ingeborg; Düker, Urda; et al.; A multivariate analysis to explain residue errors in pathogen concentration in wastewater-based epidemiology; Elsevier; Science of the Total Environment; 959; 1-2025; 1-15
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES