Mostrar el registro sencillo del ítem
dc.contributor.author
Benac, Maria Jose
dc.contributor.author
Massey, Pedro Gustavo
dc.contributor.author
Stojanoff, Demetrio
dc.date.available
2015-11-03T17:01:25Z
dc.date.issued
2015-12-15
dc.identifier.citation
Benac, Maria Jose; Massey, Pedro Gustavo; Stojanoff, Demetrio; Aliasing and oblique dual pair designs for consistent sampling; Elsevier Science Inc; Linear Algebra And Its Applications; 487; 15-12-2015; 112-145
dc.identifier.issn
0024-3795
dc.identifier.uri
http://hdl.handle.net/11336/2662
dc.description.abstract
In this paper we study some aspects of oblique duality between finite sequences of vectors FF and GG lying in finite dimensional subspaces WW and VV, respectively. We compute the possible eigenvalue lists of the frame operators of oblique duals to FF lying in VV. We compute the spectral and geometrical structure of minimizers of convex potentials among oblique duals for FF with norm restrictions; as an application, we show that these optimal duals are the closest to being tight frames and therefore have their spectrum as concentrated as possible, among oblique duals with norm restrictions. We obtain a complete quantitative analysis of the impact that the relative geometry between the subspaces VV and WW has in oblique duality. We apply this analysis to compute those rigid rotations U for WW such that the canonical oblique dual of U⋅FU⋅F minimize every convex potential; we also introduce a notion of aliasing for oblique dual pairs and compute those rigid rotations U for WW such that the canonical oblique dual pair associated to U⋅FU⋅F minimize the aliasing. We point out that these two last problems are intrinsic to oblique duality, within the context of consistent sampling.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science Inc
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Marcos
dc.subject
Mayorización
dc.subject
Dualidad Oblicua
dc.subject
Lidskii
dc.subject
Frames
dc.subject
Oblique Duality
dc.subject
Majorization
dc.subject
Convex Potentials
dc.subject
Lindii'S Theorem
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Aliasing and oblique dual pair designs for consistent sampling
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2016-03-30 10:35:44.97925-03
dc.journal.volume
487
dc.journal.pagination
112-145
dc.journal.pais
Nld
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Benac, Maria Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina
dc.description.fil
Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina
dc.description.fil
Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina
dc.journal.title
Linear Algebra And Its Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://goo.gl/NSochQ
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2015.09.007
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://dx.doi/10.1016/j.laa.2015.09.007
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/ark/http://arxiv.org/pdf/1410.2809v1.pdf
Archivos asociados